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The Deformation of Polymers

Part V - Modern Conceptions of the Mechanical Work Capacity

of Polymers

*,!

By the term "mechanical work capacity," we mean the ability

of the po ymers to avoid fracture and softening under given

conditions of mechanical and thermal action. Having thus

defined the work capacity of polymers, one may immediately point

to two reasons for loss work capacity (or "load-carrying capacity," V

applicable to structures). The first reason is the fracture of

a polymeric material with very small deformations. The second

reason is the softening of a polymeric material, causing the

development of large strains without loss of integrity.

In each mode of mechnical action, during constant or variable

temperature, one of these two reasons will be principal, and

precisely this reason will cause the loss in the work capacity

of the polymeric material. With rare exception, every polymeric

material may exist under conditions where fracture will occur

first, and under conditions where softening will occur first,

within a given range of temperatures and rates of mechanical

action, fracture will be preceded by large deformations. The

material will be softened before it breaks.

FTD-HC-23-2119-74 - 1 -



When we indicate the fracture of hard solids, it is

understood that fracture is always associated with a loss in the

integrity of the material, e.g. its breaking into pieces. When

we speak of softening, various connotations may be intended.

Characterizing the softening of polymeric solids, one often

has in mind a particular temperature (or narrow temperature

range) corresponding to the glass point. Above this temperature,

it is found in a solid (glasslike or crystalline) state. This

point of view reflects only one special case - the softening of

polymers in the absence of mechanical stresses and in a fixed

temperature mode.

During mechanical actions, as well as in different modes of

heating or cooling, the softening point may assume different

values. It was shown above that any temperature, theoretically,

may be the softening point, with the appropriate choice of the

magnitude and duration of stress. However, even this well-known

fact is not the point. The softening of polymeric substance

cannot be characterized by temperature alone, nor even by the

9 dependence of the softening point on stress. Although such a

dependence gives a more complete picture of the softening of

polymers, it does not completely account for the time factor.

Meanwhile, time, or the life of the polymeric materials form,

may be physically substantiated as a characteristic of its

softening.

FTD-HC-23-2119-74 - 2 -



In any mode of mechanical and thermal action, the polymer

loses its shape, e.g. is softened, over a given period of time.

Softening, permitted during the rapid development of deformations

occurs spasmodically. In the simplest case, when a uniaxial

stress (for example, stretching) and temperature are constant,

softening is manifest in the initiation and rapid growth of a

neck. Under these conditions, the process of the neck's initiation

has the same spasmodic character as is manifest during ordinary

continuous stretching. The time elapsed between the moment the

load is applied and the rapid loss of a sample's original form

(e.g. its softening) depends on the magnitude of the stress. The

larger the stress, the shorter the life of a polymeric material's

form. Temperature exerts a similar effect. An increase in

temperature with stress remaining constant reduces the time

necessary for the beginning of rapid deformation, and vice versa.

Thus, characterizing the softening of polymers, one should

indicate not the softening point, but of the period of time

before the beginning of softening, when the form of the polymeric

material is still essentially unchanged. In turn, the life of

the material's form depends on temperature and stress. Below, we

will examine such dependences for a number of polymers, and

describe how they were experimentally determined.

In practice, the load-carrying capacity of structures is in

many instances calculated according to the limic of tolerable

FTD-lIC-23-2119-74 - 3 -



strain. This means that the deformation of material developed

as a result of creep should not exceed a certain magnitude.

During this, no "neck" has yet formed, but the structure's

shape has changed to the extent th-t it may already be non-

functional. However, since creep in hard polymer materials is

nothing more than the development of forced-elastic strain, this

process may also be defined as the softening of material over

time.

The strength of polymers has been characterized for a relatively

long time as the life of a polymeric material, or its durability.

Such a characteristic is usually connected with fracture in the

presence of very small deformations, and may therefore indicate

insubstantial changes in the structure of the material. However,

although maximum deformation is small under conditions of brittle

(or close to brittle) fracture, it always accompanies fracture

processes, and is generated continously during the period of load

action. Thus, questions of strength and fracture should be given

more attention in books devoted to polymer deformation.

In this part of the book, we will discuss the interaction

between the processes of fracture and softening. Having taken

the time elapsed between the application of the load and fracture

or softening as a characteristic of these processes, it immediately

-4-



becomes necessary to evaluate the ratio of the ratio of the

rates of these processes. If, under given conditions of

mechanical and thermal action, the life of the material is

greater than the durability of its form, then softening will

occur over a certain time interval. If the life of the form

exceeds that of the material, then fracture will begin first.

Obviously, it is also possible to set up conditions where by both

characteristics will be identical. Then fracture and softening

will occur simultaneously.

One important question yet remains concerning the inter-

dependence between the processes of fracture and deformation.

Deformation is genera.ed in the durability testing of )olymers

under constant pressure (c = constant). And, although strain may

be small (several percentages) before fracture, the rate of its

development proves to exert a substantial effect on the final

characteristic - durability. A number of studies undertaken in

recent years have attempted to connect the rate of deformation

with the life of the polymeric material. The results of these

studies will be reviewed below.

Finally, studies of local deformations at a site of fracture

in the polymeric material are accorded special significance.

These very unique strains may be fairly large, even though total
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deformation of the sample as a whole before fracture is in-

substantial.

Let us begin our exposition of modern conceptions of the

mechanical work capacity of polymers with a look at the

phenomenon of mechanical fracture.
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Chapter 14

The Mechanical Fracture of Polymers

Physical Concepts

The fracture of solid materials is usually considered as

the most dangerous form of loss of work capacity. This assertion

may be agreed to if brittle or near-brittle fracture is indicated.

It is vitally important in this instance to learn to increase the

strength of the material, so that it may withstand prolonged

periods of heavy loading. When fracture has a non-brittle

(ductile or tough) character, increasing the material's strength

may not give the desired result. As follows from our examination

of tests conducted by Yu. S. Lazurkin, during continuous loading,

the elastic limit corresponds to lower stresses than does ultimate

strength. The potential strength of the material may not be used

on account of the "premature" development inelastic strains. Let

us first of all discuss fracture occurring at low strain.

The first physical theory of strength is usually associated
1 - 2

with the name Griffith . According to his concept, the

fracture of hard solids has a critical character, e.g. it occurs

instantaneously after the attainment of a certain critical

(ultimate) stress. According to Griffith, real solids, in

-7-



contrast to ideal solids, do not possess a perfect structure,

but instead contain a great number of defects, weakening Lht

material. Any imperfections in the crystalline lattice,

microcracks, etc. may be defects.

During the loading of a hard solid in the apices of micro-

cracks, large local overstresses develop; such overstresses

exceed the mean stress in the sample ten or even a hundred times.

When these overstresses are capable of overcoming reactive

forces between adjacent structural elements (beginning with

individual atoms, and ending with large structural formations)

a crack begins to develop rapidly, and the solid is fractured.

If the load is such that the overstresses are still in no

condition to overcome reactive forces between structural elements,

the fracture does not occur, and the solid may survive indefinitely.

Griffith's theory explained well two experimental facts,

characteristic for practically all types of hard solids.

The first fact is the enormous difference between theoretical

and technical strength. If the structure of a hard solid is

known, it theoretical strength may be calculated. Knowing the

dependence of the potential energy of the atoms' interaction on

the distance between them, and considering the number of inter-

atomic bonds per unit of cross-sectional area, one may determine

-8-



the magnitude of the force required to overcome the total

interaction. Computing theoretical strength in this manner almost

always yields a value several decimal orders (as a rule, from

one to three) less than the experimental value. According to

Griffith, overstresses in the apices of v".rious defects are

greater than the mean stress in the sample by just that factor.

Thus, on the whole, theoretical strength is not attained, although

it is reached in the apices of microcracks.

The second fact is the constancy of pressure at which fracture

occurs under usual strength-testing conditions for materials

(determination of tension and compression diagrams). If test

conditions (for example, the rate of stretching) are kept fairly

stable, each solid will display a roughly constant amount of

tensile strength (within the limits of the variability of results,

of course). At first glance, it seems that the stability of the

strength values obtained confirm the critical character of fracture.

Griffith's theory enjoyed much success, and Griffith himself

had many followers who further elaborated his theory. The basic

mathematical relationship in Griffith's theory is based on the law

of the conservation of energy, and its application to concrete

aspects of tests explains many experimental facts. Griffith's

theory, in its original form, is now substantially dated, and

even his followers have been forces to consider new experimental

-9-



data conflicting with the theory.

The critical mechanism governing the fracture of hard

solids, and consequences of this mechanism, are being subjected

to review. However, other aspects of Griffith's theory have kept

their value. The substantial role of microdefects, which weaken

the material, the effect of large overstresses, initiating in the

apices of microcracks, ets, were asserted by his theory. These

positive features of the theory are used with success to describe

the macroscopic fracture of hard polymeric solids.

One of the principal assumptions of Griffith's theory - the

critical mechanism of fracture - does not withstand experimental

3 - 8
verification. At first singly , and then systematically
9 - 23, tests demonstrated that a hard solid may be fractured not

only under stresses corresponding to critical stresses, but also

under substantially lesser stresses. It is quite unnecessary to

increase stress up to the so-called "ultimate strength" in order

to cause the fracture of polymeric materials. Applying a much

lesser stress, one may always wait for the fracture of the material.

The smaller the load being applied to a hard solid, the greater

the durability, or life of the solid.

iI

The inability of polymers to infinitely withstand mechanical

action which is less than the ultimate strength disproves the
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critical mechanism of the fracture of solids. Even this fact

alone indicates that fracture is not an instantaneous, but a

gradual process, occurring over time. As a result, the

fundamental characteristic of the fracture process proves to be

time - mechanical durability -, not ultimate stress.

Before discussing the nature of the mechanical fracture of

polymers, let us examine some experimental data. The first

studies3 of the durability (T) of polymeric materials showed

that the dependence of log T on stress at a constant temperature

has a linear character. Later, the systematic investigations

9 - 19 of S. N. Zhurkov and others led to the discovery of

general laws: they are manifest in the unique change in the

durability of polymers within a wide range of temperatures and

mechnical stresses.

3 ,1 ,/ ,9

6

* S.

-6Ga ' /

I4 I

-110-/

20 40 60 60 100 0 1 23 , 5

0 2

Figure 1.

The dependence of the logarithm of durability
on stress ( ) and on inverse absolute
temperature (b) for viscose fiber.

In Figure V.1, a: 1 - minus 75 °C; 2 - 20; 3 - 80; 4 - 150 °C. In

V.1, b: 1 -60 kgf/mm2 ; 2 - 40; 3 - 20 kgf/mm2.
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In order to obtain the dependence of durability of temperature

and stress, the following procedure is usually employed: with

temperature constant, a load is applied to a sample, inducing a

rigidly constant stress a which is maintained by a special

device. Changing the load, one then records the moment of time T

from the moment the load is applied until the moment of the sample's

fracture. The same experiments are then conducted at other

temperatures.

After completing a series of experiments in the range of

temperature and stress appropriate to each polymer, one may then

construct a graph of the dependence of log T on a and l/T. As

Zhurkov showed, these dependences are linear for many hard polymers,

appearing as shown in Figure V.1, a, b. It is interesting to note

that they converge at a single point - the pole. The pole's

ordinate is always log x° = -(12 - 13) (sec).

The character of the experimental dependence shown in Figure

V.1 a, b allow one to write an equation for the durability of

polymers in the form

.-o RT (V.1)

where T is the durability of the polymer; a0 is the pre-exponential

multiplier; U0 and y are parameters of the material; a is a

constant stress.

- 12 -



If we are interested in the dependence of durability on stress

at a single temperature, Eq. (V.1) is simplified:

'- (V.2)

The dependence of log t cn a
it different temperatures

>

(T1 > T2 > T3  T4 ).

where A and a are parameters of the material.

Pre-exponential multiplier is roughly the same for all
-12 -13

polymers, and is equal to 10 - 10 sec. This value corresponds

with the period of oscillation of atoms in solids. Parameter Uo

corresponds to the energy of activation of polymers' thermal

degradation and if such occurs with a breaking of the chemical

bonds in the main chain, the value of Uo corresponds in turn with

the energy of these bonds.

An analysis of experimental data on the durability of polymers,

expressed by means of parameters T o. Uo and V and very characteristic

values for these parameters, allowed Zhurkov to formulate a concept

of the nature of the process of polymer fracture. This concept

can be more easily explained and understood with the aforesaid

analysis of relazation phenomena in polymers, having much in

common with the process of fracture. The concept of the kinetic

- 13 -



character of the processes is found at the base of both phenomena.

During relaxation, the structure is rearranged as a result

of the overcoming of energy barriers U Y, 0, opposing such a

rearrangement. In the event of fracture, the breaking up of the

solid into parts occurs with the overcoming of energy barriers

U0 opposing the breaking of the chemical bonds in the polymer's

main chain. In both cases, mechanical stress reduces the total

energy barrier and facilitates the completion of the process.

As a result of the energy barrier's lowering (Uo - YO), less heat

energy is needed to attain the same durability. Thus, in the

presence of substantial loads, fracture occurs in the same

amount of time at a lower temperature.

Mechanical stress, therefore, is not the origin of the

fracture of polymeric materials. It only lowers the activation

barrier, facilitating the breaking up of macromolecules. As a

whole, fracture may be pictured in the following manner. Atoms

in the soli6 oscillate relative to their equilibrium positions

with a frequency of 1012 - 10-13 sec-1 . The interatomic bonds

are broken by heat fluctuations. Having determined the

probability of the bonds' breakage in the usual way as

W = Woe -U/RT, let us assume that U = Uo - yO. This means that

the probability of the bonds' breakage depends not only on

temperature, but also on mechanical stress. Th bonds between

- 14 -



the atoms are gradually broken, while mechanical stress increases

the rate of this process. The accumulation of elementary fracture

events (the breaking of more and more bonds) leads over time to

the complete fracture of the solid.

If mechanical action ib reduced, the rate of the bonds'

breakage decreases, and at a = 0 appraches the rate of polymers'

thermal degradation. Thus, the value of UO is approximately

equal to the activation energy of the thermal degradation ?rocess.

Furthermore, it may be stated that the durability of the material

as a whole is inversely proportional to the probability of the

breakage of chemical (or other) bonds, and then we immediately

arrive at Eq. (V.1).

Postponing discussion of other aspects of the problem of

strength for the moment, let us examine the relationship between

two charatteristics of the fracture mechanism - time (durability)

and stress (ultimate strength). For this purpose, we turn to

Figure. V.2, which shows the dependence of log T on a at

different temperatures.

AA

on page 16.

- 15 -
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The dependence of log T on a
at different temperatures

(TI> T2> T3 > T4).

Increasing the temperature, the straight line log T = f(a)

becomes more and more vertical, and then within a very small range

of stress, durability Tpy, assuming then that if the applied

stress is less than ap" the material as a whole may survive

indefinitely; if the applied stress is greater than aPY, the

material will undergo almost instantaneous fracture,

At higher temperatures, the temperature-time dependence

of strength it. such that a broad range of stresses will be

required for substantial changes in the durability of the material.

All of this demonstrates the conditional nature of the concept

"ultimate strength." Although such a concept may be useful in

comparing different materials, it loses its value when the issue

is the physical nature of fracture.

Eq. (V.1) reflects the experimental fact testifying to the

gradual occurrence of the fracture process. This process,

proceeding over time is caused by the formation of free macro-

radicals 24 - 26, 117. Their concentration is increased in time,

similar to the manner of deformation growth in a polymer during

creep. It may be stated that, since the polymer sample is

still far from fracture, creep is accompanied by the formation

- 16 -



and accumulation of free radicals. The dependence of the

logarithm of the rate of radical formation on mechanical

stress (Figure. V. 3) has the same linear character as the

dependence of log T on a. The above pnenomenon was studied for

hard linear polymers.

3

J.J

40 S0 50 70

Figure V.3.

The dependence of concentration U
and rate of radical formation
du/dt on stress for caprone
(polycaprolactam resin).

During the loading of three-dimensional polymers, free

radicals are formed mainly as a result of the breakage of cross-

links. This phenomenon, accompanied by the process of chemical
27 - 33

flow, is observed not only under heavy mechanical action
I

but under milder conditions as well.
it

Relating the process of polymers' fracture with mechano-

chemical phenomena, one may pose an interesting question for

- 17 -
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investigation. In studying the mechanism of the thermal

degradation of a polymer, one usually tries to find the weakest

bonds, which break first and limit the polymer's resistance to

heat. Naturally, the substitution of these bonds by stronger

bonds (e.g. a directed change in the chemic2al structure of the

polymer) will increase the polymer's thermal stability. If the

concept of the heat-fluctuating nature of fracture is valid, then

such a substitution may increase not only the therinal stability,

but also the strength of the polymer. Thus, it is very

important to detect the weak bonds in the polymer26 , which will

also be responsible for the strength (more precisely, for the

"weakness") of a plymeric material.

The search for the weaker bonds in a polymer may best be

conducted not only on zhe molecular level (by determining which

chemical bonds are the first to break); it is also vital to know

the weak places in the polymer's super-molecular structure,

because t the fracture mechanism will also be generated at these

sites.

In an oriented crystalline polymer (for example, a fiber)

crystalline and amorphous regions alternate along the orientation

axis. Such analternation is characteristic for many (but not all)

polymeric fibers. The fibrils in the amorphous region are the

first to be deformed upon the application of a mechanical load to

18



.34
this unique "structure."

It is highly probable that the rate of occurrence of

elementary fracture events (the breaking of chemical bonds) will

be greatest in precisely these areas, so that the amorphous regions

"shape" the strength properties of the fiber as a whole. In

connection with this, it is necessary to know the structure of the

amorphous regions in a cyrstalline polymer. It is worth noting

that the degree of orientation in precisely these regions, and

not in the crystalline regions, is closely allied with the strength

properties of several fibers.
3 5

The presence of amorphous regions in any crystalline polymer

may be practically regarded as the presen ce of unique defects in

a hard solid. Elimination of the amorphous regions, as with all

other structural defects, leads to a sharp increase in strength.

By applying unique methods of obtaining perfect crystalline solids

without fefects, one may demonstrate conclusively the adverse

effect of amorphous regions on strength properties.

One of these methods is the formulation of polymers via

polymerization of monomer crystals in the solid phase. For example,
36, 118 , the polymerization of trioxane, taken in the form of

crystals, leads to the formulation of spicular crystalline

formations of polyoxymethylene, devoid of any would-be defects

19



in the crystalline lattic. Strength increases as a result, and

2
ultimate tensile strength may reach 300 kgf/mm

It should be kept in mind that amorphous regions in a

crystalline polymer play not only a negative, but a positive role.

By weakening a polymeric solid and facilitating a decrease in its

strength, these regions help reveal the elastic properties of the

polymer. Without them, the polymeric material proves strong, but

very brittle - this would be extremely undesirable. Thus, control

of the structure of a crystalline polymer should be exercz."& with

reason, in accordance with the demands being made of a given

material.

If great strength is required of a material, and its brittle-

ness is not specially stipulated, the presence of amorphous regions

should be avoided. If the material should be elastic, and withstand

repeated flexure and other forms of periodically variable strain,

the presence of amorphous regions is advantageous (and sometimes

necessary) even in a strongly oriented polymer.*

Returning to the molecular mechanism of fracture, let us note

that the process of thermal degradation is not limited to the

breaking of macromolecules into large fragments. Monomers may be

*Recall that oriented polymers are the least brittle of all
polymeric systems.
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set free during the breaking of chemical bonds in the main chain.

Volatile products are also liberated in the thermal degradation

process as a result of the detachment of side groups. When a

polymer is loaded with a mechanical force, degradation begins with

the breaking of chemical bonds in the main chain37 - 39, so that

the volatile products are monomers.

For several polmers (polymethy methacrylate, polystyrene,

polypropylene) the products of pure thermal and mechanical degradation

coincide 39. For other polymers (polyvinyl chloride, polyacryloni-

trile), these products are different, since thermal degradation occurs

intially with the detachment of side groups, and mechanical

degradation is accompanied by the rupture of bonds in the main chain.

These experimental facts confirm the validity of S. N. Zhurkov's

conception of the kinetic character of the fracture of polymers,

closely allied with degradation processes.

The complexity of the processes of thermal and mechanical

degradation causes several deviations from the temperature-time

function of xx strength, expressed by means of Eq. (V.1). This

equation is valid at stable values for parameters U0 and y and is

indeed satisfied for a large number of polymers. It should be kept

in mind, however, that it may be used only within a range of

temperatures and stresses defined for each polymer; to extend its

21



use further would be risky. Thus, in the region of small stresses,

experimental durability is always greater than that predicted by

E. (V.1).

The main reason for deviations from Eq. (V.1) is the

possible change in parameters during the experiment. This applies

especially to structure-sensitive parameter y. If orientation,

crystallization and other changes in structure occur during the

experiment, parameter y is changed, and the conditions necessary

for satisfying Eq. (V.1) are violated.
40 -

The character of thermal degradation proves to have a

singular effect on the temperature-time function of strength. If

the formation of secondary radicals initiates the degradation

process, function (V.1) is complicated, and takes the form

(V. 3)r=Te

The dependence of
concentration U and
rate of radical
formation du/dt on
stress for caprone
(polycaprolactam
resin).

where T is the temperature of the pole; the remaining parameters
p

have the same meaning as in Eq. (V.1).
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Relation (V.3), as (V. ), describes the set of straight lines

in coordinates log T l l/T coming out of a pole located not on the

ordinate axis, but somewhat to its right (Fig. V.4). The point of

the pole corresponds to temperature Tp The introduction of an

inhibitor into the polymer, supressing secondary radical reaction,

shifts the pole leftward to its normal position.44 These facts

leave no doubt as to the close connection between the processes of

fracture and thermal degradation.

S2'
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Figure V.4

The dependence of the logarith
of durability on inverse
absolute temperature for
polystyrene at a stress a:

1 - 11 kgf/m 2; 2-8;
3 - 5 kgf/mm.

"'hermal, and in particular thermal-oxidative degradation, may

exert a substantial effect on durability characteristics. In the

absence of mechanical stress, both forms of degradation ultimately
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cause the fracture of the material. Thus, Eqs. (V.1) and (V.3)

do not lose their physical meaning at a = 0, as it may seem at first

glance. These equations predict the ultimate durability of polymeric

materials in the absence of mechanical loading.

Thermal-oxidative degradation also proves to have an effect on

character of the temperature-time dependence of strength. 45, 46 The

dependence of log T on a deviates from the linear and has a very

complex S-shaped character (Fig. V.5). In the simpler cases, under

the influence of a single external factor (ultraviolet radiation,

gamma radiation, etc.), the character of the temperature-time

dependence of strength remains unchanged47 - 50, with only the

parameters of the Zhurkov equation being altered. Under heavy

loading, radiation has little effect on durability; under small

loads, it has a very substantial effect, while the coincident effect

of mechanical stress and radiation proves to be greater than the

effect produced by their alternating action. An aggressive medium

also exerts a unique effect on the durability of polymers:
I

20

16, 0

00

0 0

.!00

0 0 80 120 60 200 240 260

6T KeC/CM 
2

Figure V.5. Caption on
page 26

2 Ii



The dependence of log T
on a for polyethylene
at temperature:
1 - 11 kgf/mm2 ; 2 - 8;
3 - 5 kgf/mm2 .

Up until now, we have examined the temperature-time dependence

of strength for hard (amorphous and crystalline) solids. A tempera-

ture-time dependence of strength is also characteristic of polymers

in a high-elastic rubberlike state. The life of these polymers is

determined by the magnitude of the applied stress and temperature.

The fracture of elastomers may occur under loads substantially

smaller than "ultimate strength." However, the temperature-time

dependence of strength for elastomers, as a rule, is somewhat

different from the similar dependence (V.1) for hard polymeric

solids. The durability function for (cured) rubber, according to
53 -57

the work of G. M. Barteneu , is described by the following

relation:

= Ao-e U/RT (V. 4)

where T is the durability; A and m are parameters of the material.

The remaining symbols have the same meanding as in Eq. (V.1).

If test are conducted at a single temperature, Eq. (V.4) is

simplified, and takes the form

/.,=c Ba-n

where B and n are parameters of the material.
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The experiment shows that experimental data for pure rubber are

described well by Eq. (V.4), although they are satisfied with the
57

same approximation by Eq. (V.2). The dependence for pure rubbers

is described better by Eq. (V.2). Transitions to other temperature

regions also changes the character of the temperature-time dependence

of strength. Even within the limits of the high-elastic state, one

may distinguish temperature ranges in which durability is described

by relation (V.1) or relation (V.4).

It follows from Eq. (V.4) that the activation energy for the

fracture process is independent of stress. On the other hand, Eq.

(V.1) shows that such a dependence exists, while for hard polymers

the activation energy decreases with increasing stress. For

elastomers57 , one observes the reverse: the activation energy

increases with an increase in the load. This phenomenon is easily

observed with thermosetting polymers58 , which may be changed from

the solid state into the high-elastic state for the convenient study

of temperature raages. In a glasslike condition, the durability of

these polymers is described well by Zhurkov's equation with a

"normal" (positive) coefficient y. This equation is also valid

for the high-elastic state, although here the value of y is negative.

Thus, activation energy increases with increasing load, and

du : Ality increases along with it.

This experimental fact, interesting by itself (durability being

greater for loaded material than for unstressed), is explained by
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the fact that in the high-elastic state, intermolecular bonds play a

large role. They take on part of the load, releasing the chemical

bonds from work. Under small loads, the rate of the fracture process

is slow, and the intermolecular bonds, assuming the load, facilitate

a more uniform distribution of the stress. Hence the characteristic

form of graphs of the temperature-time dependence of strength for

thermosetting polymers (Fig. V.6).

Figure V. 6.

The dependence of log -r on a for
melamine-formaldehyde films with-
in a wide range of temperatures:
1-minus 23 2- 0; 2- 20;

A 4- 30; 5- 50;
6- 60; 7-70 C.

In the low-temperature region (glasslike condition) the graphs

,- have the .normal form, following Eq. (V.1). In the region of high

temperatures (high-elastic state), the slope of the graphs testifies

to the increase in the value of U with increasing stress. In the
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intermediate (transition) region, activation energy is independent

of stress. In general, the durability of elastomers may be

described with more complex relations59 than Eqs. (V.1) and

(V.4).

The dependence of durability on stress and temperature

invariably appears in the form of exponential functions when the

activation process of the rupture of interatomic bonds is assumed

to be the basis of the fracture mechanism. Here, concrete instances

of the appearance of such a mechanism may be approached in several

ways. For example, in the 1940's, Tabolsky and Eyring60 explained

the dependence of durability on stress and temperature starting

from the mechanism activating the breaking of interatomic bonds.

Assuming that the life of the material is determined by the rate

of the bonds' rupture, they proceeded to the relation

AF-Ok (V.6)
= A N, e--- kT

0

where A is a parameter; N - the original number of bonds; AF - the

activation barrier which must be overcome to break a single bond;

A - the deformation of the bonds during rupture; k - Boltzmann's

constant.

The fracture mechanism is treated somewhat differently in the

works of Bueche61 and his followers62 , 63. They also hold that
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chemical bonds are broken under load, with the load lowering the

activation barrier. Since the number of unbroken bonds decreases with

time, Bueche introduced a second assumption on the uninterrupted

increase in the load discernable with these bonds. Describing the

probability of the bonds' rupture in the usual manner, Bueche

derived the following equation for durability:

U.-2.76sv (V.7)
I jj RT

where w is the natural frequency of the bond's oscillations; 6 - the

deformation of the bonds during rupture; S - the cross-sectional

area per bond.

Bueche's theory was later refined, and although it does not

always agree with experimental data, it may be used, for example,

to describe the fracture of pure and impure (filled) rubbers.6 2, 63

Up until now we have looked at the fracture mechanism only as it

is related to the heat-fluctuating rupture of chemical bonds. But

a large role is played in polymers by intermolecular interaction

caused by the presence of bonds of a physical nature (van der Waals

forces, bonds between polar groups, hydrogen bonds). According to
V E Gu64 - 66

V. E. Gul , the inclusion of these bonds in the work has a

substantial effect on the whole process of fracture. The basic
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premise elaborated in Gul's work is that the loading of a polymeric

solid first causes the rupture of intermolecular bonds. The load

on the chemical bonds is increased according to the accumulation of

these initial ruptures.

By introducing the probability of the rupture of intermolecular

bonds and their proportional load on the chemical bonds, and by

examining the rate of crack propagation in a polymeric solid, Gul

derives the following relation for durability:

B RT (V.8)

where B, ax, ay' are material constants.

Somewhat earlier, Gui64 found a relation connecting load at

rupture a Y with the rate of deformation v:

o, _)Av, exp(UIRT) (V.9)

where A, n and U are material constants.

Relation (V.9) was later the basis for calculating the

strength of composite materials. All of these studies are

65 66
generalized on a survey and monograph
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Original approaches to the description of the fracture process

have been suggested by A. A. Ulyushin and P. M. Ogibalov68 , as well

as A. I. Gubanov and A. D. Chevychelov69 - 71 Thus, in a series

of works69 - 71, Gubanov and A. D. Chevychelov examined a theoreti-

cal dependence of durability on stress and temperature for several

polymers which has the form of Zhurkov's formula. Their theory

allows one to compute the coefficients in the durability equation

beforehand, and to predict the path of creep curves.

The Kinetics of Crack Propagation in a Hard Solid

The systematic investigations of S. N. Zhurokov and his

collaborators, as well as the work of a number of other authors,

leaves no doubt as to the heat-fluctuating nature of the fracture

of polymeric solids. The fracture process consists of the

gradual rupture of interatomic bonds as a result of heat fluc-

tuations, while mechanical stress reduces the activation barrier

and hastens the completion of the process.

Elementary fracture events in an actual polymeric solid take

place more rapidly at the sites of greatest stress. These sites

are essentially the same as any imperfection in the structure of

a hard solid. For example, stress concentration occurring in the

peaks of microcracks exceeds the mean stress in the samply by

10, and sometimes 100 times. It is clear that the interatomic
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bonds at these sites will be ruptured most rapidly. And although

the fracture process has not progressed too far in the rest of

the sample, it has been completed at the site of the most

dangerous defect. As a result, the sample's durability is ex-

hausted and it is broken into two sections.

If the whole sections of the sample remaining after fracture

are tested again to fracture, the ultimate stress at fracture may

sometimes differ little from the original value. This expimental

fact seems to conclusively disprove the statement that the fracture

process has a heat-fluctuating character and is generated through-

out the entire sample. However, it is easily demonstrated that a

defective hard solid should behave in precisely this manner.

The fact is that the dependence of durability on stress has

an exponential character /see Eq. (V.2)7. Therefore, if the

apices of the microcracks are under a load which is substantially

larger than that acting on the rest of the sample, tne rate of

the rupture of bonds in the apices will increase catastrophically.

Conversely, with relatively light loading of the parts of the

sample free of defects, the rate of the bonds' rupture will be

negligible. In these parts, the number of bonds having broken

between the moment of the load's application and the moment of

fracture will be insignificant.
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The exponential dependence of durability on stress also points

out the fact that even in other, less dangerous defects, stress

will not cause any notable rupture of interatomic bonds. Only

maximum stresses play a decisive role in determining durability,

all other stresses being negligible. All of this leads to the

concurrence of the results of initial and repeat tests.

It is interesting that if one takes material free of defects

(more exactly, almost free of defects), specially prepared fiber
72

glass for example , then it will be converted to powder upon

fracture. Here, elementary fracture events are indeed generated

throughout the entire sample. Thus, the macroscopic fracture of

the sample occurs at all of its points simultaneously.

The concentration of stress in the peaks of microcracks and

the abrupt acceleration of the rupture of bonds at these sites

demands that attention be given the study of the fracture

mechanism generated by the initiation and propgation of cracks.

In Griffith's works73 ' 74, there was an attempt to establish

a mathematical dependence between the strength of a hard solid

and the character of cracks. In particular, for a sample with

a rim crack of length 10, critical stress aK is calculated

according to the formula

1_ 2a0E (V.10)

ill
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where E is the modulus of elasticity; ao is the potential surface

energy.

Griffith's followers repeatedly proved relation (V.10)

experimentally. For many polymers75  , ultimate tensile

strength is actually proportional to 1//1o. In other cases79

deviations are observed, especially in the temperature dependence

of the proportionality coefficient between aK and i//o.

The deviations compel consideration of the different losses

arising during the initiation and propagation of cracks
72' 80 - 82

72
At least three forms of mechanical loss may be indicated :

strain losses arising from irreversible deformations in the apices

of microcracks; dynamic losses accompanying the conversion of

elastic strain energy into kinetic energh during the separation

of the walls of a microcrack; losses during the degradation of

elastic strain energy at the moment of the rupture of inter-

atomic bonds in the microcracks' apices.

In describing:the fracture process, one should consider all

thr-e forms of loss; only strain losses may be ignored, in the

case of an ideally brittle solid.

The presence of microcracks in an actual hard solid does

not alter the basis of the conception of the fluctuating rupture

of interatomic bonds' and the gradual accumulation of elementary
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fracture events. However, the peculiar pattern of the initia-

tion and propagation of cracks in polymers obliges us to look

for different ways of describing the process.

"Silvering" of a material or, as is sometimes said, the

appearance of "milk" is often observed during the fracture

of polymers. These phenomena are connected with the initiation

and propagation "silver cracks," differing structually from
83- 8

ordinary fatigue cracks. The walls of silver cracks are

connected to very fine strands of oriented polymeric material.

These strands facilitate a more uniform distribution of stress

in the material.

Silver cracks grow at an almost constant rate from the

89, 90surface to the center of the material As a result of

the successive rupture of strands, silver cracks are transformed

into ordinary cracks, the walls of which are not connected to

the strands. The growth of these cracks also leads eventually

to the complete fracture of the solid.

In evaluating the strength of glassy polymers, it should be

kept in mind that the glasslike state itself is in the first

approximation subdivided into brittle and non-brittle substates.

(see Chap. 15). At low temperatures, fracture has a brittle

character and is almost completely determined by the propagation
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of ordinary stress cracks. In the non-brittle forced-elastic

region, silver cracks predominate.

The durab ility of the polymeric material will be ex-

hausted only after silver cracks have spread over a large

portion of the sample (this will be adequate for the beginning

of the rapid propagation of macroscopic fatigue cracks). This

leads to the characteristic configuration of the fracture
91, 92

surface; it consists of two areas, rough and shiny. It

should be noted that ordinary cracks are propagated much faster

than silver cracks.

The development of two types of cracks in the material leads

to the division of the fracture process into at least two

(sometimes into three) stages. In oriented polymeric fibers, the

application of a load is followed by a "drawing" of the fiber,

e.g. a change in structure. This process is later slowed, and

cracks appear in the second stage. In the final stage, the

cracks are rapidly propagated throughout the entire sample.

Naturally, the largest role in determining the durability of

material belongs to the second, and longest stage of the

fracture process.

The heat-fluctuating mechanism of the rupture of structural

units in the apices of microcracks, as a rule, is the basis of

the theory of polymer strength. This phenomenon is discussed
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differently by a number of authors. In one set of cases93 - 951

brittle destruction is regarded as the result of the propagation

of cracks to the so-called critical dimension, while others
22' 23, 96

consider the slippage of polymer chains relative to each other.

The theory of the temperature-time dependence of strength

elaborated by G. M. Bartenev and his collaborators97 , 98 offers a

detailed relation for the durability .',f polymeric materials.

This theory, based on the heat-fluctuating mechanism of the rupture

of interatomic bonds in the apices of microcracks, is founded

on the following premises. The bonds between atoms may be ruptured

and restored, but if at a given stress there is equal likelihood

of rupture and restoration of the bonds, then the crack will not

grow. The theory also introduces the concpet of a safe stress a.

below which this condition is observed, and above which the

probab ility of the bonds' rupture exceeds the probability of their

reestablishment.

By determining the probability of the above process in the

usual manner and by considering that the rate of crack propagation

is proportional to the probability of the bonds' rupture, one

may derive a relation for durability in which material parameters

accounting for the scale factor are included.* (*Accounting for

the scale factor means that one takes into consideration the form

of the sample, its dimensions, the dimensions of initial cracks,

etc.)
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For circular rods in the case of brittle fracture, Bartenev's

equation for durability takes the form

a r- (V.11)

str RT

where r is the radius of the rod; a and T are constant stress and

temperature; X is the average distance between adjacent broken

polymer chains in the path of the crack's propagation; vo is the

frequency of thermal oscillations of the atoms in the polymer

chain; w is the fluctuating volumne in which the elementary

fracture event (the rupture of bonds or bond groups) occurs; 0 is

the coefficient of stress concentration at the tip of the propa-

gating crack; X s the scale factor (1 - SoS)- , where so is the

initial sectional area of the most dangerious microcrack; "a" is

a constant accounting for the dependence of activation energy on

temperature.

Constants Uo and wo = y are similar to the corresponding

constants in Eq. (V.1). The structure-sensitive parameter y

is the volumne in which the elementary fracture event occurs,

multiplied by the coefficient of stress concentration.

If fracture occurs as a result of the propagation of silver

cracks, e.g. in a non-brittle manner, the life of the polymer is

determined by the durability of the strands and is described by
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the simpler relation

R e -RAT (V.12)

Parameters AX w ando have the same meaning as in Eq. (V.11) but

have different values.

In the region of non-brittle fracture, relaxation processes

become quite important; their calculation allos a more precise

description of the durability of polymers in this temperature

region. The transition from the temperature region where nearly

ideal brittle fracture occurs to the region in which fracture is

non-brittle changes1 00 - 102 the character of the dependence of

log T on a. Two clusters of straight lines, each having a

different slope, are formed instead of one such cluster1 02 , and

the correlation of these experimental data leads to two different

values for the activation energy and parameter y = wa.

•. 103

In a theory developed by Barenblatt and associates for the

kinetics of crack propagation in a hard solid, the adhesive force

acting in the annular region of the surface of cracks is assumed

to be time-dependent, even under constant load. The adhesive

forces are transmitted by structural elements (s-rands) connected

to the walls of the propagating crack. If it is assumed that

the rate of the change in the density of these load-carrying
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elements is described by an equation similar to a first-order

reaction equation.

dn _ __kn (V.13)
dt

where n is the density of the load-carrying elements, equal to

the ratio of the number of these elements in an infinitely small

area to the total area; t is the time; k is the transfer rate

then one may derive all of the basic relations for long-term

strength.

Equation (V.13) is the basis for describing the kinetics of

crack propagation and the fracture of a polymeric solid as a
103

whole. Such an apporach permits the formulation of the

conditions of brittle fracture, the examination of several

questions concerning long-term strength, and the substantiation

of criteria of fracture under variable load.

Fracture occurs in an actual polymeric material as a result

of the propagation of cracks, with considerable stress con-

centrated at the tips of such cracks. The material is fractured

first at these most dangerous sites. However, a check of the

stress concentration again leads to the usual temperature-time

dependence of strength. THis is not surprising, since kinetic

conceptions of the gradual heat-fluctuating rupture of bonds
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between atoms or larger structural particles are the basis of

both the purely molecular mechanism and the mechanism connected

with crack initiation and propagation in an actual hard solid.

The equation given by Barenblatt and his collaborators for th

durab 3Lity of polymeric materials appears thus:

7• _ (V.14)

where

T0 3 e-CBD Y r50 / 6 D-' T r (V. 15) (V.15)'0 6 B--.D) V -6- 4-D -B " 0 Gin--o

Here 10 is the initial dimension of the crack at t - 0; C is

Euler's constant (C = 0.577 . . .); B is the coefficient characteri-

zing the bond's tensile growth rate with its elongation v; T0 is

the oscillation period of atoms in a hard solid; a is the length

of the end region; D is a constant; 7 is a meterial constant;

Go is a material constant equal to the characteristic tension of

an individual bond; no is the number of bonds per unit surface

area of cracks outside the end region.

Comparing relations (V.14) and (V.15) with Zhurkov's

equation, it may be stated that quanity yo has the meaning of

parameter y in Zhurkov's equation in cases where the hard solid
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is free of defects and the load is distributed evenly over all

bonds (a purely molecular fracture mechanism). The factor

has the meanding of the particular coefficient of stress

concentration.

An experimental investigation of the propagation rate of

main cracks in a number of polymers showed 119 that most of the

(durability of a sample T under load is consumed by the propaga-

tion of precisely these visible cracks, not by the T initiation

of nucleated cracks. In any mode of loading, their propagation

increases exponentially with increasing stress, which is in

complete accord with the basic equation of the temperature-time

dependence of strength.

The above-examined theoretical and experimental studies

pertain, as a rule, to uniaxial tension. Efforts have been made

to consider a complex stress condition.
120 - 123

The Durability of Polymers under

Variable Load and Temperature

In examining the physical nature of polymers' strength to

find the parameters of the temperature-time dependence of
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strength, experiments are conducted under static conditions,

holding stress and temperature rigidly constant. Constant

temperature and stress are more the exception than the rule,

however, under the conditions of the polymers' practical use. Any

material is almost always subjected to variable temperature and

load during its work in constructions. It is vital that one

determine the durability of polymers under complex conditions

of mechanical and thermal action. It may be sssumed that if a

sample's durability is gradually exhausted by a constant load,

cyclic loading (with rests) will have the same effect. It is very

important to know if the rest periods affect the ultimate durability

of the sample, and if so, how.

Many observations show that imperfections in the material are

not mended in the relaxation period. This is easily confirmed.

Let us place side by side two identical samples of polymeric

material and load them with an uninterrupted constant load P.

This load should not be so great as to cause the material's

immediate fracture. Over a certain period of time VTn' let us

take the load from the second sample and allow it to rest for a

period of time VT 0 - with VT0 not differing substantially from

VTn. We will then again load this sample with the same force

and await the fracture of both samples.

If all of the experimental conditions and the structures of

the samples are exactly identical, the first sample will fracture
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before the second one, and the difference in their durability wil

amount to VTo. The total time that the two samples will have been

under load before fracture will be the same. This means that the

second sample "remembered" the period of time it was under load,

and that none of the imperfections were mended in the rest period.

This simplest of tests testifies to the observance of the

principle of "the summing of imperfections." The principle says

that imperfections occurring in a sample as the result of loads

are irreversible, e.g. they do not dissappear during a rest period.

This also confirms the heat-fluctuating nature of the fracture

process, in the course of which elementary events of interatomic

bond rupture gradually occur. The number of broken bonds accumulates

over time, leading as a result to the macroscopic fracture of a

polymeric solid.

The congruence of the durability of samples under uninterrupted

or cyclic loading implies the following mathematically. Let the

durability of a sample under a certain constant stress be equal to

T. Let us assume that this stress acted for a period of time VTI ,

while VT1  <T. Having removed the load, we allow the sample to

rest. It is quite obvious that the relative "aging" of the sample

will be VTI/T. Let us again load the sample with the same force

and maintain that load for period of time VT . After the repeated
2*

mechanical action, the sample's relative "aging" will amount to
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V-I/T + VT2/T. Let us continue the complete fracture of the sample

after its loading for period VTn. At the moment of fracture, th

relative "aging" will be

,Al,. (V.16)
IOCKO.1bKV K K

n

i=A

We can now look at a load changing constantly over time. We

begin in this instance as usual. Let us distintish an infinitely

small time intevaJ dT and consider that within this time interval

stress is constant and equal to an instantaneous value a(T). Then

we substitute VTi for dT, and the summation changes to integration.

Relation (V.16) takes the form

(V.17)P d,
0

where Ty is the time from the moment the load is applied to the

fracture of a polymeric solid; T /F(T)7 is durability during

constant stress, equal to instantaneous value G(T).

In order to determine the durability of a polymeric material

under variable load, it is necessary to first substitute the

dependence of stress on time a(T) in any of the relations (V.1),

(V.8), (V.11), etc. and then determine the fixed interval (V.17).

The upper limit of this interval will also give the sought-after

value for durability under variable load. Relation (V.17) was

45



104

first introduced by Bailey and was named Bailey's criterion.

Bailey's criterion is based on two assumptions. The first is

the irreversibility of the fracture process, already mentioned

above. The second is the independence of the rate of fracture on

the previous mechanical history of a material. Both of these

assumptions are not always valid. If the rate of the change in

stress is insubstantial, the stress period is approximately equal

to the rest period, and the structure of the polymer is unchanged
105 - 109

under load, Bailey's criterion is completely satisfied.

When these conditions are not observed, the calculated values

for durability Ty deviate from experimental values, For example,

during cyclic loading with a large number of cycles, intensive

initial heating of the material occurs, and the temperature in-

creases and differs substantially from the initial temperature.

Naturally, by substituting the initial temperature in (V.17), we
109, 110

will obtain an overstated value for durability.

There may be other reasons for the discrepancies (a change in

the structure of the material by mechanical action, local heating).

These deviations do not by any means signify the basic principle -

the irreversibility of the fracture process, leading to the

gradual accumulation of imperfections in the material - is not

observed. The divergence between calculated and experimental

values of durability means only that there are other parameters

of Eqs. (V.1), (V.8), (V.11) etc. apart from stress. As a
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result, the actual experimental conditions as well as the structure

of the material (e.g.) temperature, structure-sensitive parameter

y) differ from the initial conditions according to which calcula-

tions by means of Bailey's criterion were performed.

In order to account for these changes, Bailey's criterion must

be written as follows:

dt (V.18)
J T[c (1). T(M.y (t)J

0

where t/F(T), T(T) y(T)7 is the durability at constant stress,

temperature and structure-sensitive parameter y, respectively equal

to instantaneous value 0(T), T(T) and y(T).

Calculation of the changes in all of these quantities over

time is complicated in itself, not to mention the fact that

solving Eq. (V.18) also becomes more complex. Generally, the

"life" of a material is less with variable values fora, T and y

than for equivalent constant values. Thus, imperfections in the

material are not mended, but are accumulated, e.g. the principle

of the irreversibility of the fracture process is completely

satisfied.

Having eliminated local overheating or changes in the

structure of a material, one may approach complete agreement
110

between experimental and rated durability , calculated by
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means of Eq. (V.18). It follows from this equation that under

any conditions of mechanical and thermal action, durability is

a function of the parameters of stress, temperature and

structure of a hard solid.

One may arrive at the same durability by different paths. For

example, one may at first assign a small load which, even acting

over a prolonged period, does not consume much of the material's

durability. The load may then be increased, and durability will

be expended much more rapidly. Sometimes the converse is

necessary: the material is subjected to active loading, and

subsequently to weaker loading. Here, most of the durability

will be expended early, but the result will be the same:

fracture will occur at the moment when the relative exhaustion

of durability (relative "aging") equals unity.

It should always be remembered that the dependence of dura-

bility on stress and temperature has an exponential character,

so that the existence of the material a very short time under

a heavy load will lead to the same depletion of durability as

the material's maintenance under a small load for a loncl time.

The raliability of the operation of various devices is often

tested in practice by the creation of large loads. If overloads

are endured, it is obvious that the device will function under

small loads. But it is also clear that by assigning large loads,
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we are substantially reducing total durability.

Adherence to Bailey's criterion makes possible yet one more

conclusion, important from a practical viewpoint. Testing a given

part under periodic loads, we think that the unit should be shut

off from time to time, thus giving it a "rest." It seems to us

that this procedure prolongs the life of the part's operation.

However, the total durability of a material under periodic load

remains the same, regardless of whether it is rested or not.

Moreover, if the rest period substantially exceeds the period of

loading, total durab ility will be less, not greater, than under

uninterrupted load.

This conclusion, paradoxical at first glance, is confirmed
43, 111

by numerous experiments , while the difference in durability

is expressed in several decimal orders. How does one explain this
43, 111

astonishing phenomena? The authors who first observed it

explained the sharp reduction in durability by the change over

time in structure-sensitive parameter y in Zhurkov's equation, as

well as by relaxation processes.

It may be assumed that under load, the sample's structure

changes somewhat (owing to drawing and orientation), as if it

were adapting to new conditions. These changes are such that they

facilitate the survival of the material in a loaded condition

(redistribution of stresses in the most dangerous places,

)I9 _A1
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orientation in amorphous regions of semi-crystalline polymers,

etc.). By adapting to the load, the material accepts it more

easily.

2j

I I I

17 - 6.1c

Figure 7.

The deDendence of durabi-
lity on stress for high-
density polyethylene under
constant load (1) and
cyclic loading (2). Time
under load is 20 min, period
of rest is 10 min.

If the load is removed and the material is rested, the

material's structure will return to its original condition

(typical relaxation process). With short rests, the rebuilding

of the structure does not proceed too far, and a ter repeated

loading it will correspond in a very short time to the structure

at the moment of the load's removal. During long rests, the re-

arrangement will cause additional irreversible changes in

material. Total durability is reduced as a result.

These questions, interesting and important from all viewpoints

are found in the beginning stage of study, while the results often

prove contradictory. High-density polyethylene is characterized124
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by an increase in durability under continuous loading under

conditions where a= constant). It is understood that during

such a comparison only the time under load is considered. Thus

the question of the effect of rest on the durability of polymers is

still open, and only further systematic compilation of experimenta

data will allow us to make any final conclusions. It is possible

that the "mending" of cracks in the polymeric material occurs
125

during the relaxation process, the more so as studies of recent

years have made it possible to sub stantiate such an assertion.

, 112

I. V. Pazumovskaya has made a thorough analysis of the

conditiorsunder which Bailey's criterion is or is not satisfied.

W

With variable loading, Bailey's criterion generally exceeds

unity and is written in the form

B~t _-cBitdetr)

-dt (V.19)

where I is an extremely complex function, dependent on the dimen-

sions of the sample, the length of the initial crack and the rate

of changes in stress with time da/dt.
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Figure- 8.

The dependence of durability o
on stress for polymethyl
methacrylate: o - durability
at a = constant; A - dura-
bility under cyclic loading;
o - durability computed by
means of Bailey's criterion.

Under static loads (da/dt = 0), Bailey's criterion is strictly

observed. If da/dt & 0, Bailey's criterion may exceed unity. With

small rates of load changes, these deviations may be completely

ignored, since they lie within the accuracy limits of durability

experiments. Under ehe usual conditions of dunamometric tests,
105

as well as during cyclic loading with a small frequency , the

values for durability computed by means of (V.17). agree with

experimental results (Fig. V.8).

Thus, the durability of a polymeric material under variable

load may in many instances be computed by means of Bailey's

criterion. This is a straightforward problem. The opposite
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problem may also be solved: determine parameters Uo and y in

Zhurkov's equation from data from dynamometric tests conducted

at several temperatures. The tension curves obtained as a result

of such tests must be reconstructed into coordinates of true

stress - time. Generally, these curves are of variegated form,

and cannot be described by some kind of simple equation. Then the
113

problem can only be solved graphically.

Let us write Bailey's criterion with regard to Eq. (V.1), in

which stress changes with time by the arbitrary law (t):

dt (V.20)
Re T

0

After conversion of relation (V.20), we find for a certain tempera-

ture i:

In -e -1R 
(V .21)

where tr, i is the time to fracture of the sample at temperature

Ti; ai (t) is the dependence of true stress on time at the same

temperature.

By conducting dynamometric tests at several constant tempera-

ture Ti, we derive a set of equations based on (V.21). A solution

53

,Mal



to this set may be found with any trial-and-error method. It is

desirable that the number of equations in the set exceed the

number of unknowns (Uoy , and TO), since in this case the results

obtained may be correlated and checked. The problem is greatly

simplified if the interval in Eq. (V.21) is determined in finite

form, for example with a linear increase in stress with time a = vt

Then the parameters of Zhurkov's equation are easily determined

by a special nomogram.
114 , 115

The parameters in Zhurkov's equation are determined from

data from thermomechanical tests in similar fashion. By keeping

stress constant and assigning a fixed mode of increase of tempera-

ture with T (t),let us write Bailey's criterion with regard to

(V.1) in the following manner:

dt

Te RT (1)

where tr is the time to fracture under the conditions of a

thermomechanical test.

To determine the integral in (V.22) in finite form, it is

convenient to make use of modes of heating conveyed by Eqs. (1.88)

or (1.89). By conducting thermomechanical tests at several

constant stresses ai and having determined the durabilities tr,
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i corresponding to them, one can easily find the values of para-

meters Uoand y by a special nomogram.115 , 116
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Chapter 15

The Mechanical Softening of Polymers

As has already been mentioned above, the softening of polymers

together with fracture is the most dangerous form of loss of

#ork capacity. Mechanical softening is manifest in the develop-

ment of large deformations of a polymeric solid under load. For

amorphous glassy polymers, this effect is called forced elasti-

cityl, 2, and for crystalline solids - recrystallization.3' 4

In all cases, the deformation process process entails the rear-

rangement of the original structure, affecting all levels of

the polymer's super-molecular and molecular organization - from

the mutual displacement of large structural elements to changes

in the form of individual macromolecules, even to the point of

their fragmentation.

Depending on temperature and load conditions, these different

deformation mechanisms are unicuely superimposed on one another,

while one may predominate. Independently of the mechanism, the

development of significant strains in a polymeric solid leads

to a loss of its capacity for work, even though it remains intact.

Naturally, we are speaking of herd plastics, which must preserve

their form under load. Yet still another, equally important

demand may be made of such polymeric materials: to "collect"

the required stress and store it for the entire period of the

material's work.
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In the 'irst case, products fabricated in a given mode of

strain should, according to their working conditions, ensure

the creation of the necessary stress (inpparticular, the trans-

mission of force through a shaft made of a polymer). In the

second case, we may designate all devices (in particular, the

rubber seals for piston devices) which ard made hermetic by a

certain compressive force.

Thus, examining the possible reasons for the loss of work

capacity in a solid, one may indicate two general instances:

1) deformation exceeding tolerable levels develop

1) deformation exceeding tolerable levels develops under

given load-conditions;

2) stress is reduced below required levels due to relaxation

under given load and temperature conditions.

Naturally, in the first instance we may examine the process

of creep in polymeric materials, and in the second - the general

process of stress relaxation. Both are determined by the modes

of mechanical and thermal action, and special cases where a =

constant and T = constant or e =constant and T = constant give,

respectively, the simplest processes of creep and stress relax-

ation usually studied.
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Before proceeding to a detailed examination of these funda-

mental instances of work-capacity loss, let us turn to the important

concept of the thermal stability of polymers. In connnecting

thermal stability with the loss of strength or softening of

polymeric materials5 , this property is usually characterized by

the glass point (for amprphous hard plastics) or the temperature

close to the melting poing (for crystalline polymers) at which

the original structure of a solid cannot be maintained.

In practice, thermal stability is characterized by several

temperatures (for example, thermal stability according to Vika or

Martens) at which deformation may develop to a strictly defined

degree under given test conditions, It is not always considered

that with such a characteristic the actual sofetning of the

polymeric material may occur not only at the glass point, deter-

mined under certain load and temperature conditions, but at any

point in the temperature range for the glassy state, ifother

stresses are applied or if the duration of their action is changed.

The latter is most important, because the time factor plays

an important role in the mechanical behavior of polymers. Thus,

whether we are speaking of the work capacity of polymeric

materials in general or of thermal stability in particular, we

need to relate temperature, stress and period of time for which

work capacity is preserved to one another.
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The work capacity (thermal stability) demands on polymeric

materials formulated above lead to a physically expedient

characteristic of work capacity having a sense of the time

interval over which work capacity is maintained. In the first

case, this time is to,,over which strain reaches a certain tolerable

level. In the second case, it is time ty, over which stress, in-

creasing or decreasing, reaches a certain tolerable level. Let

us examine these cases in greater detail.

The Work Capacity of Polymers In Creep (ist Case)

The conditions according to which deformation c (t) should

not exceed a fixed tolerable magnitude cpr may be formulated in

the form of an inequality.

t (t) e4  (V.23)

The time interval for which this inequality holds determines the

work capacity of hard solids, since they should not change their

form above certain limits during any mode of mechanical and thermal

action. It should be noted that the inverse inequality

e (1)~ -::- np .r) (V.24)

requires the development of deformation at least up to the fixed

magnitude. Such requirements must always conflict during the
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fabrication of finished products from polymeric materials (for

example, cold forming, stamping, etc.). Consequently, inequality

(V.24) determines the feasibility of the material's fabrication,

since it must be satisfied inthe time allowed by a given fabrication

method.

Let us examine the region of tolerable magnitudes of deformation

in which the value epr should be found. For this purpose, we turn

to ordinary creep curves. Tests show that the rapid development of

deformation begins only after a certain period of its slow develop-

ment, and is accompanied by a spasmodic change in the conditon of

the solid. The study of creep curves as well as data6 - 16 recently

obtained show that generally the creep curve may be subdivided into

three sections (see Fig. 11.30). The last section reflects the

rapid growth of deformation, e.g. the softening of the material.

This third section of the creep curve, formed over a definite

period of time under load, corresponds to a certain magnitude of

deformation designated by e Kr (see Fig. 11.30). The spasmodic

change in deformation during its passage through ckr is observed

not only in the special case of isothermal creep when a = constant,

but in any mode of mechanical and thermal action.

Naturally, the first - but not always adequate - requirement of

the material with respect to its efficiency will be

,np < Kp (V.25)
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since the form of the material changes raiidly after deformation

equal to has been attained. The condition required for

workability (ability to be fabricated), of course, is written in

the form

2pz icp (V.26).

Since deformation greater than ckr has a forced-elastic character

(see Chap. 5), the product holds the form given it during fabrica-

tion long after removal of the load.

Both of these conditions /-V.25) and (V.26)7 may prove to be

inadequate. For example, many workpieces may prove incapable of

work even at magnitudes of deformation below e~r. In these

cases, the tolerable level of deformation, and hence the durability

of the form, is determined by the particular demands madeof a given

product. Requirement (V. 26) may also be unsatisfactory if deforma-

tion much greater than E Kr is required for the fabrication of a

specific product.

In order to determine the period of time over which the dis-

turbance of the material's forms does not exceed tolerable limits,

it is necessary to know the dependence of deformation on time. Let

us examine general cases of such, and proceed later to specific

problems of mechanical action.
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As is know 17, 18, when one is speaking of isothermal conditions,

deformation is generally a function of stress history Under

non-isothermal conditions, deformation is a function of both

mechanical and thermal T (t) history over a period of time

from 0 to t:

()=[ (); T)] (V.27)

It is asstmed ere that the temperature was constant up to t = 0,

and that mechanical stress was absent.

In the case given, we are interested in the time which elapses

from the moment of the beginning of mechanical and thermal action

until the developnent of a deformation equal to epr- In other words,

we need to determine the durability (longetivity) of the form to

of a polymeric material, since the material loses its capacity for

work at the moment ultimate deformation epr is attained, owing to

an intolerable change in its form. Obviously, the durability of

the form is determined from (V.23), providing conditions exist

whereby e(to) = epr, and in accordance with Eq. (V.27):

0 0 (.8

It follows from Eq. (V.28) that the form's durability to is

also a function of functions a(t) and T (t). Let us illustrate

this with a special example.
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Let us examine an isothermal (T = T ) deformation and assume that

the function in Eq. (V.28) is linear according to stress.* Then in

place ,f Eq. (V.28) we may use Boltzmann's equation (see page 110)

which is our symbolization takes the form

+- t J y 4,(t--; T0) (-r)dr (V.29)ff- (To--)

where E(To ) and ( ;To ) are respectively, the instantaneous modulus

of elasticity and a memory function (dependent on w = to -

accounting for stress history - taken for temperature To.

It is obvious from Eq. (V.29) that for a specific material, e.g.

for knowns E(To ) and g(w;To), and for a specific magnitude Spr,

the form's durability to is completely determined by stress history

a (t), so that it is a function of stress. If the process were

isothermal, to would depend not on the value of To , but on the

entire thermal history.

Now is is expedient to find the conditions under which the

material attains the specific magnitude of deformation most rapidly.

Consequently, we need to determine the value of to, which

corresponds to the minimum amount of time required for the develop-

ment of the tolerable deformation magnitude Epr. This may be

accomplished with an examination of any possible stress histories,

under conditions limiting their absolute value, e.g. Io(t)1oam.

* Linear according to stress means that function (to - T; TO)

in Eq. (V.29) is independent of stress.
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Considering that (to - t; TO) is a positive function, mono-

tonically decreasing with an increase of (t - t), and replacing

a(t) with its maximum value am (e.g. examining creep at constant

stress am), we obtain

VPE(T). + 14p(tO-; TO)]mudi (V.30)

or, designating to - t = w

fn m _ rto ,(o;T) (V. 31 )

It can easily be seen that with the substitution of am for a(t),

the value of to can only decrease. Therefore to, determined from

Eq. (V.31), is the least of all time periods for attaining deforma-

tion epr. This is valid for any isothermal modes of change in

stresses, not exceeding the magnitude am. Thus, Eq. (V.31) gives

the value of time period to over which work capacity is guaranteed,

e.g. deformation in the material will not exceed the specific value

Spr in this period of time if stress is not raised above am.

In similar fashion, an arbitrary thermal history of creep may

be examined and the non-linearity of the dependence of deformation

on stress may be confirmed. For this purpose, it is necessary to

introduce the dependence of the parameters of memory function

(w;T o ) on stress and temperature.
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Returning to a material's fabrication ability, we note that

relation (V.28) determines the time required to obtain the

necessary deformation pr" If the modes of mechanical and

thermal action are fixed, then the duration of the fabrication

process is determined, for example, the duration of isothermal

molding at a certain temperature and fixed pressure.

If the duration of the fabrication process is fixed, e.g.

to, as well as the value of Epr then one must find from relation

(V.28) the thermal-mechanical modes that are satisfactory, and

select the most convenient mode. This generally difficult problem

may be solved in individual special cases, for example, corresponding

to Eq. (V.29). The examination of these questions is interesting

to itself, but lies outside the scope of the present work.

According to relation (V.25), the most dangerious instance of
loss of work capacity arises when deformation exceeds ekr. At

this moment, a neck is formed and deformation begins to increase

very rapidly. The material is softened. The formation of a neck

and the softening of polymers is best studies under uniaxial

tension at a certain velocity. The tension diagrams obtained for

amorphous and crystalline polymers under such conditions are

described in detail in Chapters 5 and 11.

Neck formation is also possible under a constant load. Systematic

investigations-16 have shown that when c constant, a fixed
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amount of time passes between the application of a load and the

formation of the neck, with the time interval called the

induction period. The greater the stress and the higher the

temperature, the less the induction period.

In accordance with the terminology used above, this period will

be called the durability of the form of the material under constant

stress and temperature, and will be designated to. It was shown6

that for crystalline polypropylene, original and modified with

artificial nucleators, the dependence of to on temperature T and

stress a is described by the equation

Aoeu7/RT (V.32)

where A, b and U' are parameters of the material.

The processes of fracture and creep were studied from these
12

same viewpoints in polypropylene, and in other polyolefins.

Under constant load, various forms of work-capacity loss may

be observed. Depending on the load and temperature, these polymers

may display brittle fracture (without neck formation) or softening

(with neck formation).

During tests conducted at the same temperature, both brittle

and non-brittle fracture may be observed in polymer samples. Large

constant loads cause fracture of the sample earlier, but small
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stresses lead to softening (neck formation) first. Authors12 have

found that the life of a polymeric solid t and the durability of

its form to lie n the same stress function curve and, conse-

quently, are subject to the same equation, (V.1).

Under constant load and temperature, glassy polymess are also

capable of neck formation after a certain period of time has
8 - 10

elapsed from the moment of the load's application, for

polymethyl methacrylate and polystyrene, the dependence of the

form's durability to on temperature T and stress a is described10

by the relation

u_-_ (V.33)

where t Or is the pre-exponential multiplier; U osy and T p are

material constants, while T p corresponds to the temperature of

the pole (a fan of straight lines of the dependence of lg to on

l/T come out of this point).

Thus, if a polymeric material is capable of displaying large

deformations, it may neck not only during tension at a certain

rate, but also under constant load. This means that necking

(softening of the material) is a kinetic process, and in this

connection is quite similar to the fracture process.
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Figure V.9.

Compression diagram for poly-
styrene (deformation rate
d /dt = 0.02 min-1 ) at
temperature: 1 - 60°C; 2 - 40;
3 - 20; 4 - minus 20;
5 - minus 50; 6 - minus 140 0C.

Under uniaxial compression, the creep curve also consists of

several sections.11 Curiously, if small humps are observed on a

polymer's compression diagram (Fig. V.9), then an abrupt

acceleration of deformation will be observed on the creep curve

after a period of slow deformation increase (Fig. V.10).

Consequently, the durability of a polymeric material's forms is

also depleted during compression at constant stress. The larger

the applied load, the less the time elapsed from the moment of its

application ot the abrupt increase of deformation.

Independently of the amount of stress, and even of test

conditions (creep at a = constant or compression with a constant

velocity), the accelerated growth of deformation begins at practi-
11

cally the same value. Evidently, after the attainment of this
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"critical" deformation, there occurs abrupt overall disturbance

of the material's structure, preceded by the accumulation over

time of elementary softening events.

The formation of a neck has been studied in amorphous films
S 13

of lavsan. The durability of the form to of this material under

constant stress and temperature is described by relation (V.32).

Let us compare the results of dynamometric tests13' 19 on this

polymer with the dependences of to on stress and temperature. Let

us assume that, as during fracture, the abrupt nucleation of a

neck occurs after the durability of the polymeric material's

form has been fully exhausted. Then, under increasing stress,

the form's durability to should be determined from a relation similar

to Bailey's criterion:

4 td ) =t (V.34)

0

where t o-(t)7 is the durability of a form under a constant stress,

equal to the instantaneous value a (t).

69



-I I ,. .
I

II I / p. ,

0 10 20 30 - .
z 2 4' a a

t

Figure V.10.

Creep curves for polystyrene
under compression. Tempera-
ture and stress are e 5ual to:
1 - 60 °C, 4.5 kgf/mm 2;
2 - 40 OC, 5.5 kgf/mm2 ;
3 - 20 °C, 7.5 kgf/mm ;
4 - minus 20 °C, 12.5 kgf/mm ;
5- minus 50 0 C, 14.5 gf/mm2 ;
6 - 15 °C, 21.5 kgf/mm . Times
on the abscissa for curves 1,
4 and 6 are in minutes; for
curves 2, 3 and 5, in hours.

Substituting relation (V.32) in Eq. (V.34), we obtain

to
C dt =1 (V. 35)
A fo (t)1- uIRT

0

Considering that under dynamometric test conditions the true

stress, as a rule, changes according to the law a - vt (v is the

rate of stress increase over time, t is the time), after integrating

* The relation a = vt is valid only up to the amount of a neck's formation.
This dependence is violated with further tension.

70



(V. 35) we obtain

= -b(v.3 6 )( /R  b -=I)

Considering that Vt. = ave (a is the limit of forced elasticity), after'

calculating the logarithm of (V.36), we have

g = I(b 1)Av + ' Vp

(We) b I 2,3RT (b -i)

Eq. (V.37) describes the dependence of forced elastic limit on

temperature T and loading velovity v (under conditions wherebybI

a = vt). Substituting numerical values for A, U, b and v in Eq.

(V.37) obtained by direct measurement at a = constant and T = constant,

we may construct the dependence of log ave on l/T (Fig. V.11).

The values of ave computed by means of relation (V.37) are

always higher than experimental values. This, in turn, indicates

the nonequivalance of structural changes occuring under constant

stress and increasing stress. No direct structural studies have yet

been conducted, however, that allow us to pass unambiguous judgment

on both of these changes.

t 1,2

I I I
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Figure 11.
Caption on next page.
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The dependence of the
forced elastic limit
ave on inverse
absolute temperature

1/T for amorphous
lavsan films:
1 - calculated values
Of ave-
2.- experimental values

o ave.

The efficiency of Polymers in Stress Relaxation (2nd Case)

What is often require of a polymeric material is not that it keep

its form, but that is support a certain stress - often, both are

required. In connection with this, it is necessary to examine the

second case of a polymer's work capacity when stress relaxes further

than that amount tolerable under working conditions.

The condition according to which stress, relaxing in a certain

mode of deformation and thermal action should not be reduced below

a required value apr' can be written in the form

- o(1) (In (V.38)

Here, two types of problems are possible:

1) The magnitude of stress satisfying condition (V.38) should

be attained after the passage of time under load tn:

2) after time of retention tr, the relaxing stress, exceeding

apr, should remain greater than it.
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The inverse inequality

(V.39)

may be required in evaluating the feasibility of a polymer's

fabrication (for example, in evaluating the possibility of stamping

polymeric products without creating overly strong breaking forces

in the working apparatus).

Let us look again at condition (V.38), and determine the region

of tolerable stresses in which apr should be found. For this

purpose, let us turn to ordinary stress relaxation curves. A test

shows that if stress created at the beginning of the relaxation

process approximates the value of the forced elastic limit ave,

then the relaxation processes will undergo abrupt acceleration. This

phenomena often has a spasmodic character, for example, owing to

the growth of a neck during tensile deformation. Thus, there exists

a value akr above which apr cannot exist. In particular, during

tensile deformation at a constant rate, the role of akr is filled

by the corresponding forced-elastic limit ave*

In order to determine the period of time over which the required

stress is achieved and then maintained, it is necessary to know the

dependence of stress on time under the given conditions of deforma-

tion and thermal action. However, let us first examine general

relations.

73



To obtain general functions, we use the relation following

from Eq. (V.27)

Vt); TQ4 (V.40)

It may be used to solve the first and second problems (see

above). It follows from Eq. (V.40) that the value of Gpr is

connected with period t (e.g. with the period of time necessaryn

to create the stress G(t) = apr in a solid) by the relation

(oa)r -X(") .6 (V.41)

0 DI

It is quite obvious that time under load is a function of

functions P(t) and T (t). Limiting isothermal deformations

(T = T0 ) and assuming that the function in Eq. (V.41) is linear

according to deformation, we obtain a relation similar to Eq. (V.29)

o~p £ 7o) (.)-[ [ --,; o) ( dT(V. 42 )

Here E (TO ) and f (0 ; T ) are, respectively, the instantaneous

modules of elasticity and a memory function (accounting for the

deformation history) taken for temperatures T0 ; W = tn -t.
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For a specifically chosen material, e.g. for fixed E (To)

and f (w ; TO), and for a fixed value of apt, the value of tn is

determined completely by the deformation history c(t). It is

apparent from Eq. (V.42) that tn, as might be expected, is a

function of deformation. It is useful to calculate the value of

period tn required for the development of minimum stress pr

necessary for the product's work.

If one examines a set of arbitrary deformation processes

characterized only by their uninterrupted increase, then the values

for deformation to moment of time tn may be different If, however,

the set is such that there exists the least deformation attainable
to moment of time tn, equal to C (tn)7 mn' it may be asserted

that the stress, in the process of its relaxation of constant

deformation co, will be the least of all stresses attainable in

this time period for any increasing modes of deformation.

It may easily be demonstrated that stress relaxing at a

constant deformation equal to any of the attainable values of

C(tn ) will be less than in any other mode leading to the same defor-

mation e(tn).

Let us prove this assertion.

From Boltzmann's equation

4 A4

W-T)&(~d' (V.43)
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when (t) = o = constant, we have

Ea()=, _ (V.44)

It can be seen from Eq. (V.44) that during the increase of deforma-

tion o, stress is always higher at any moment, since the expression

in the brackets is independent of co, but a(t) increases with increas-

ing co. For the sets of any undiminishing deformations e(t) attaining

to fixed moment t = tn a certain value e., minimum stress a(tn ) will

be obtained in the mode of deformation e(t) = o= constant.

Actually, it follows from Eq. (V.43) that for t tn:

)(V.45)

The first term in Eq. (V.45) does not depend on the deformation

mode 6(t), so that it has (conditionally) a constant value e(tn) = co-

Obviously, the largest value for the integral in this equation will

be attained when e(t) = co, since all of the deformations observe

under this condition will be undiminishing. Consequently, in the

mode C(t) = co, stress over time interval tn from the beginning

of deformation will be the least of the whole set of undiminishing

modes of deformation, attaining to moment t. the value E(tn) = eo-

According to Eq. (V.44), this assertion is also valid for modes of

undiminishing deformation attaining to moment of time tn values

exceeding co.
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A+ deformation equal to LSS(tn)_/min, stress will be minimal

since a decrease in the magnitude of deformation at which relaxation

occurs always signifies a reduction in stress.

Thus, if one is required to create over time tn a stress

treater than or equal to some fixed valueo pr, then this will be

accomplished in any case where c(tn) is no less than o Thus *

I amu.%t oopa3oM - "

and for co we have

nP (V.47)(tit) >'O=- 11-_ )

E- I (M)d
0

The value of co may be determined from Eq. (V.47) if time under

load tn is given, or time under load tn may be determined if co is

given. Here, of course, the temperature To and the value of apr

should be known.

Let us proceed now to the solution of the second problem. This

problem consists of the determination of the time interval of retention

relaxing stress tr, in the course of which a stress is created in the

*For the sake of abbreviation, f (w; TO ) will from here on be
written simply as f(w), since we are speaking only of isothermal
deformation.)
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solid and, decreasing, remains higher than a certain tolerable limit

pr .Let us examine one of several possible, sufficiently general

cases. Let initial stress an' greater than opr' be fixed practi-

cally instantaneously, e.g. assume that time under load tn = 0.

Then in accordance with Eq. (V.47), the following will be required

to create this minimum deformation

(V.48)

The value pr will be attained only after the lapse of time tr,

determined in accordance with Eq. (V.43)

Ir) (N) f

or

* t (6 *) = - (V.50

0 o

Let us show how Eqs. (V.49) and (V.50) are used to find the

stress retention time tr for a number of polymers. If stress is a

polymeric solid relaxes according to Kohlrausch20 , then in

accordance with the work
21

l(o) 1  k. (" ) -1 ;-( , •(V. 50a)
., k. _1 k ,
• .) ( ' P.
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where t r,k,E1 and E are constants, while E1 < E.

Then it follows from Eqs. (V.49) and (V.50) that:

(v)4" -") rvoOl- n (V.51)

or

V p OEl (V. 52)
(P = Or) uE, - E (Ou - G p)

C.) (h,) (f r)

Knowing the constants of a relaxing material tr, K, E1 and E,

as well as the fixed values an and 0 pr, it is easy to determine

the time of retention of relaxation stress, tr, in the course of

which stress will be greater than apr if stress an was fixed at t = 0.

Let us note as well that at El = E, Eq. (V.52) describes a visco-

elastic solid according to Kohlrausch, for which

=,r, ( I nt (V.53)

* . For a visco-elastic Maxwell body.

=p rppIn (V.54)
(r) "(r) \ 'np/e

In practice, deformation is not fixed instantaneously, but

after the lapse of a certain time interval. It time under load
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tn # 0, then it is important to determine the interval of time

tr over which the relaxing stress remains greater than apr, beginning

from the moment the original stress value an = a(tn ) is attained.

In this case, it is sufficient to examine the relaxation of

stress a(t) at t tn and at a constant deformation value co equal

to its value attained to the moment of time tn. Here, it is not

yet possible to hypothesize how deformation increases during the

time under load. By making use of Boltzmann's equation (V.43), we

have , (- (V.55)

-r = c (H) = Ee0 = 0 ( - T) e (T) d

Hi -(-.)

p H(. + tp) = Ee0- f N tp -- T) e () dT- (V.56)
(Pr) (r)

t M (r)

(1.)

By computing the second equation from the first, we find

am -- . .p J - (t -- ) - f ( . p -T-~ F(T) dr+ (V.57)

t+ ItP
+ 'o H t tp T) d"
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hence, considering that

W (+ tP _) dr f () d (V. 57a)

we have

I -'A 1P~ + (V.58):)r (V.58)

In the special case where t = 0 (instantaneous loading), an
n

Eco, and Eq. (V.58) is converted to Eq. (V.50). The integral in the

right member of Eq. (V.58) is always positive, as if there were no

mode of increase in undiminishing deformation c(t) during the

period under load Lit should be noted that f (tn - tr - t)> f(tn - t),

since the memory function always decreases with an increase in its

argument7. Thus, the less the upper limit tr of the integral

standing in the left member of Eq. (V.58) the less the right member

of this equation. Consequently, it may be asserted that.the time

of stress retention, determined from the condition

:~ki k~ ~(V.5 9)

0

will be minimal.
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Thus, finding the value tr from this guarantees a period

of retention of a stress, greater than apr , created with any

magnitude of deformation attaining the value co in the course of

tn and thereafter remaining constant, with the loading of undiminishing

deformations, for which e(tn)>Eo, and with deformations continuing

to increase in any manner after stress an is attained.

All of the avove-mentioned, of course, amy be distributed

over a non-isothermal mode /see Eqs. (V.40) - (V.427 and non-linear

deformation. The relaxation properties of polymers under non-

isothermal conditions will be discussed below.

Returning to the general problem of the work capacity of a

polymeric solid in different modes of mechanical and thermal action,

the value of creep experiments conducted at a = constant and relaxation

experiments conducted at s = constant should again be emphasized.

The systematic investigation of these basic types of relaxation

*processes in polymers is vital, especially in connection with their

structure. More attention should be given the non-linearity of

deformation and relaxation processes.

In many important practical situations, stress and deformatio

are such that the linearity of laws governing relaxation are ob-

served, so that the above relations can be used. However, a non-

linear effect (in particular, necking during tension) connected
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with a change in the structure of a stressed solid is displayed

at sufficiently high deformations and stresses. This circumstance,

which cannot exceed a certain stress value (akr) at any deformation,

is also an example of the non-linear behavior of relaxing polymeric

solids.

In principle, the above relations may be generalized for the

region of non-linearity (by using non-linear functions introduced

by Volterra1 7' 18 to describe mechanical relaxation phenomena).

However, at present this problem is still far from a solution,

so that it is important here that systematic experimental data

be introduced.

Let us examine these data2 3 for characteristic representations

of three classes of glassy polymers: polymethyl methacrylate,

polycarbonate with a base of bisphenol-A and aromatic polyimide

anilineflourene, and tetracarboxydiphenyloxide.

In order to determine the stress retention time, including the

critical Gkr, it is necessary to conduct a series of stress

relaxation tests within a potentially large range of deformations.

At a chosen temperature, a series of ordinary stress relaxa-

tion curves are determined, with each curve corresponding to a

The chemical comyosition and synthesis of this polymer is
described in the work.
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certain constant deformation. Figure V. 12 shows such a series

for polymethyl methacrylate at 500 C. In the region of small

deformations, the relaxation curves are regularly shifted upward

with an increase in e. In the region of large deformations,

relaxation stresses pass deeper, and the curves begin to move

downward. This is also a manifestation of the non-linearity oi

relaxation processes.

In each series of experiments, depending on the fixed

temperature, the deformation ranges should be chosen so that the

dependences of stress on deformation, taken for the same moment of

time, pass through the maximu. To observe the maximums, the

relaxation curves are reconstructed on the coordinates stress-

deformation. Thus, if the curves shown in Figure V.12,are re-

constructed on these coordinates, a new set of curves is formed

(Figure V.13). Each curve corresponds to a strictly defined

duration of the stress relaxation process, and the maximum on

each characterizes the greatest stress that can be maintained by

a polymeric material in the course of the indicated interval of

time at the given temperature, e.g. it characterizes Gkr (see

page 412).

This characteristic of a polymeric solid is very important

since when time tr has expired, stress theoretically cannot be

greater than akr. A higher stress simply cannot be retained in the

course of tr. Henceforth, we will use only these maximum stresses,
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since we are most interested in evaluating the duration of the

retention of the highest possible stress and in characterizing

the role of the process' nonlinearity.

Of particular interest is the dependence of equilibrium

stresses aoo on deformation, which correspond to the duration of

relaxation tr = oo The maximum value a00 has the meaning of akr

for indefinitely large time intervals. In order to determine the

value of a00 , we may use Kohlrausch's equation:

o+t) = (V.60)

where a(t) is the relaxing stress; o, k and tr are parameters of

the curve; aoo is the equilibrium stress.

* In accordance with Eq. (V.60), the value of oo
characterizes that stress which is established during time of
construction tioo. In actuality, as experiments conducted 25

earlier have shown, new drops in stress with subsequent new
retardations of relaxation caused by structural changes may be
observed on the relaxation curve over fixed periods of time.
a consequence, the value of 00 may be regarded as a conditional
characteristic of equilibrium stress; it is determined by the
extrapolation of a to t = oo in accordance with Eq. (V.60). However,
having determined the value of ooo and all other parameters of
Eq. (V.60), one may calculate the tressswhich will be attained over
a very long period of relaxation 25 , of course barring further
structural changes.)

8
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Figure V.12.

Series of stress relaxation
curves for polymethyl
methacrylate at 50 OC. Each
curve corresponds to a
specific strain.
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Figure V.13

. The dependence of
stress on strain for
polymethyl metha-
crylate at 50 °C.
Duration of the rel-
ation process:
1 - 1 min; 2 - 3;
3 - 10; 4 - 60 min.
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Having determined maximum stresses Okr (tr, T) corresponding

to a specific duration of relaxation tr at each temperature T, and

having completed measurements in all accessible temperature range

up to the glass point, one should construct the temperature

functions of these critical stresses atcconstant values of time

tr. Such functions are shown in Figure V. 14 for polymethyl

methacrylate, polycarbonate and polymide.

It is obvious that the greater the required time under load

and the higher the temperature, the less the stress that will be

retained by a polymeric material. Moving along line A - B in

Figure V. 14, a, e.g. examining the constant stress condit on,

one may see how the duration of the retention of a chosen stress

changes with temperature. Furthermore, looking at isothermal

conditions (line C - D), it is easy to determine how the duration

of the retention of critical (e.g. maximum) stress changes with

increasing values of this stress. If a fixed value is assigned

the stress retention period, one can always determine the maximum

temperature at which this requirement will be met.
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Figure V. 14

The dependence of critical stresses on temperature
for polymethyl methacrylate (a), polycarbonate (b)
and polyimide (c). Duration of the relaxation
process:
1- 1 min; 2- 3; 3- 10; 4 - 60 min; 5 -oo.

Let us go on now to quantitative relations. It should be noted

beforehand that in logarithmic coordinates, the dependence between

tr and Ukr is rectified in the range of values of tr from minutes

to 104 sec (Fig. V.15). The slope of the lines depends on

temperature. Having designated the absolute value of the tangent

of the line's angle of slope as a and having constructed a graph
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of the dependence of on temperature, one may observe a very

interesting pattern (Fig. V.16).

These graphs have the form of broken lines. In the presence

of a broad glass-transition region, the broken line consists of

three sections, e.g. there exist three temperature ranges in

which the dependence of aon T is different (see Fig. V.16). The

value of adecrease with an increase in T in the first section, are

independent of temperature in the second section and again de-

crease in the third section (the one closest to the glass point).

Two such sections exist for polycarbonate, and only one - the last

section - exists for polymethyl methacrylate.

Thus, the characteristic form of the dependence of a on T

testifies to the fact that before the transition to brittleness,

the glassy-state region may be subdivided into substates in which

the mechanisms relaxation processes are different. Between these

substates, of course, transitional regions are observed. For

polyimide, these regions correspond to temperatures 100 and

* 200 0C. For polycarbonate, one can distinguish two substates with

a single intervening transition region ( 100 0C); for polymethyl

methacrylate - only one substate.
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Figure V. 15

The dependence of log t r on log Ukr for poiy-
methyl methacrylate (a), polycarbonate (b)
and polyimide (c). at different temperatures.
The number on the curves are the tempera-
tures in 0°C.

Since the graphs of the dependence of log t r on log a kr are

straight lines (see Fig. V.15), it may be written that at

T =constant

tt =S% (V. 61 )

W (k

where t r is the time over which the required stress is retained, e.g.
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the work capacity of a solid compressed to a specific magnitude of

deformation; Ukr is the constant stress; B and a are parameters,

generally temperature-dependent.

The dependence of a on temperature examined above (see

Fig. V.16) may be described with sufficient accuracy in each of

the substates by the relation

a = O  xT (V.62)

while in the second section x = 0.

12 l 20 2
20

10 

10 
25 h___

20 40 0 50 100 150 100 200 300

Figure V.16.

The dependence of a on temperature for polymethyl
methacrylate (a), polycarbonate (b) and polyi-
mide (c).

Experimental data 23 show that the dependence of log B on l/T

also has a linear character, so that

B = AeU/RT (V.63)

where A and U are material parameters.
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Then Eq. (V.61), with respect to (V.62) and (V.63) is

written thus*

t -Aa(-xT) RT (V.64)

In the case where x = 0, Eq. (V.64) takes the form

= A0 %oUIRr (V.65)

Similar relations have been derived for calculating the

durability (wear life) of rubber2 6 and to describe the induction

period of necking under a constant load6 (see page 408). Shown

below are the numerical values for parameters A, U and ao in

Eq. (V.64) for the range of temperatures in which x = 0.

te). %L A ;*4.0

.. ' I.c/cIMM') (~cI,€jlF*..,e) '.

-ompom7 -2 34 __ 27,5

nolxi.. ...... ............ -2 46 23,2

Figure V.16a.

In the case where x = 0, Eq. (V.64) takes the form

A (a*-x T)

where to and Go are certain constants; parameters A and ao are
dimensionless quantities; ,x has the dimension of the inverse
absolute temperature.

If we choose to = 1 sec and co = 1 kgf/mm2 , then we will obtain.
Eq. (V.64).

92



The quantity U, of course, connotes the activation energy,

although there is a yet insufficient experimental data to

explain the above process, assuming such an interpretation.

It was noted above that graphs of the dependence of log tr

on log Ukr in a limited time interval tr are straight lines.

With large intervals of time, as tests have shown23 , they

deviate from the linear toward the side of the increase * in

stress retention time tr. With large stress retention times

tr, the dependences between tr and ukr (Fig. V.17), as ordinary

stress relaxation curves, are described well by Kohlrausch's

equation, which with variables akr and tr takes the form

(t) = o ,,, ,,, + A . (V.66)

2. ,--

Figure V.17.

The dependence of
critical stresses
ak  on time t for
polymethyl mefha-
crylate at 50 C.

The same deviation is also observed in studies of strength.27
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The parameters of Eq. (V.66) are marked with an asterisk,

since they are used not for describing classic stress relaxation

curves, but for conveying the relationship between maximum

stress Ckr and the time tr over which it is attained. Experiments

and calculations show23 , that the dependences of o* k* and *00 on

temperature are linear in each of the above-mentioned glassy sub-

states, but that they may have different slopes. The temperature

function of t* are linear in the coordinates log tr - 1/T.

Generally, the following relations, valid only within the boundaries

of each substate, may be written

k" (T) = k- krT (V.67)

0(T)= .o . r (V.68)

c. (T) = F.. o--. TT (V.69)

= A'eUIRT (V.70)

The values of parameters ko, T, a0 , o, oa T, a00, c, aoo, T,

A* and U* are shown in Table V.1.

W The same deviation is also observed in studies of strength.
27

94



Table V.1. Numerical Values of Parameters
of Eqs. (V.67) - (V. 76)

i ~~ ~ no"iexa ~ flo. xaGO 4 ___________

-- a Pr Ko. a*' 20I;O.C I iCO-i GC, 1 -- 1OOC IIC Q -21O'CI 21O- zOO C

ke 0.69 0.47 0.47 0.487 0.487 0.487
kr-10' 1.67 0787 0.787 0683 0.683 0.683
as o. rzc;c. -65 -93 -51780 450 450
o;: ijA!pa) 2.75 1.0 5.25 0 0 0
O . o.r,lc.t2680 1293 2156 2320 1850 1543

a . rx/(c2'--paa) 7,62 2.75 4.8 4,32 3.06 2.43

Ig A* (ax) -6.4 -1.05 -7.76 0.42 -2 -4.75

U. KcJ/IO.b 10.8 4.6 14.3 3.6 7,8 13.8

1) Parameters
2) Polymethyl Methacrylate
3) Polycarbonate
4) Polyimide

By using these parameters, one may describe the work capacity,

for thermal stability, of a polymer within the entire glassy state.

For this purpose, we convert Eq. (V.66), having solved it relative

to time:
In 1p in n -(T) 'I * (T) (V.71)

S(7 (T) T?

Equation (V.71) together with Eqs. (V.67) - (V.70) shows how the

work capacity of a polymer, (e.g. the duration of the retention

of a stress greater than akr) changes in relation to temperature

T. This relation is valid within the entire glassy state, although

its parameters may be changed in the transition from one sub-

state to another.
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On the Substates of a Glassy Polymeric Solid

Thus, the region of the glassy state should be subdivided

into several substates (not counting brittle), since one observes

several transitions in the range Txr< T <Tg, where Txr and Tg are,

respectively, the brittle and glass points. These transitions are

particularly characteristic for strongly linked polymers, having

on very broad glassy region. It is interesting that the brittle

temperature Txr in such systems is found far into the region of

minus temperatures, while the glass point T is located in a high

(for organic polymers) temperature region. Polymers of this type

are aromatic polyamides, polyolefins and polyimides, as well as

many other heterocyclic compounds.
5' 28, 29

The large difference in the glass and brittle temperatures o

a nutiber of polymer systems allows one to distinguish a broader

temperature range (T - Txr) in which forced elasticity is dis-

played and various mechanisms are manifest for the development

of relaxation processes2' 29, 30 and fracture processes.27' 31, 32

The wider the interval Tg - Txr, the more transitions within it.

Thus, three substates and two intervening transition regions are

manifest in aromatic polimide, two substates for polycarbonate,

and one substate for polymethyi methacrylate, corresponding fully

with the temperature range (Tg - Txr).
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Determination of the temperatures of these transitions with

static methods is very important from both theoretical and practical

points of view. The fact is that these transitions cannot always

be observed with dynamic (mechanical and electrical) methods of

study.

These transitions are of practical importance because a

polymeric material begins to rapidly change its mechanical

characteristics precisely at the temperatures of these-transi-

tions and may, for example, remain incapable of work long after

the glass point has been reached. Each polymeric material works

in a stable manner within each substate, especially within the

second substate (see Fig. V.16), in which relative relaxation is

insensitive to temperature.

The transitions of interest to us are made within the tempera-

ture range in which forced elasticity is manifest. It is no coinci-

dene, therefore, that the graphs of the temperature dependences of

the forced elastic limit display sharp breaks (see, for example,

Fig. 11.13). The point (more precisely, the interval) of the break

also shows a temperature transition, dividing the glassy state

into substates.
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Figure V.18.

Relaxation curve
(layout).

In numerous experiments devoted to the study of forced elasti-

city, Yu. S. Lazurkin2 observed two sections of the temperature

dependence of ave - sloping and steep, while the latter was in the

immediate vicinity of Tg. It was thereby shown that the glassy

state is expediently subdivided into different substates having

different mechanisms of deformation. It should be noted that the

temperature dependence of the activation energy must be introduced

in order to describe the second, steep section (see page 142).

Nevertheless, it may be that the transitions can be more clearly

observed with static relaxation methods, mentioned above. However,

these methods are quite laborious, and we need a simpler and

quicker method of determining all the substates of a glassy solid.

It may prove advantageous to use a characteristic such as the

reciprocal relative stress drop $ after a strictly-defined period

of isothermal relaxation, introduced in the works.
29 , 30
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Figure V.18 shows an ordinary relaxation curve. One may

distinghish several characteristic stresses on it: initial

stresscln, which is developed after the fixing of strain, or

over a very short, strictly-defined time interval subsequent

to this; final stress a, corresponding to a specific period

of lapse of the relaxation process (for example, stress after

one hour). We are interested in the characteristic of the

relaxation process l/ , the reciprocal of the relative stress

drop:

(V.72)

If one conducts a series of stress relaxation tests under

constant strain within the entire glassy state, and subsequently

constructs the temperature dependence of l/, he may observe

a pattern such as appears in Figure V.16. Let us introduce

several diagrams as an example. The first (Fig. V.19) shows

the temperature dependence of 14 for aromatic polyester

(polyarylate) terephthalic acid and phenolphthalein.29 , 30, 33

Similar functions are shown in Fig. V.20 for polyimide aniline-

flourine and tetracarboxydiphenyloxide, determined at three

constant strains.
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Figure V. 19

The temperature dep-
endence of 1/0 for
polyarylate tereph-
thalic acid and pheno-
lphthalein.

10 00 20 0
22

Figure V.20

The temperature
dependence of l/
for polyimide at
different strains:

1 - 4%; 2 - 6;
3 - 8%

It is easily demonstrated that the glassy state is divided

into three substates in which the dependence of 1/ on

temperature is different. In the region of "subsidiary"

transitions, the graphs have a break, defining the transition

points. One of these transitions, the closest to the glass
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point, is observed for many polymers. Below the temperature

of this first subisdiary transition, plastic is found in the

area of stable work capacity. It is also easy to see that the

dependences of i on T are quite similar to the dependences

of a on T examined above (see Fig. V.16). They show that

the relaxation process occurs differently in each of the sub-

states. In one of the substates (sloped section), relative

stress relaxation proves to be almost insensitive to tempera-

ture. With further increase in temperature, the relaxation

process is accelerated, and at T - T has completely expired

(the value of 1/ approaches unity).

Thus a number of transitions within the glassy state may

be detected with comparative ease by a simple series ofstress

relaxation tests (at the same strain) at different temperatures

throughout the entire region of the glassy state. The

construction of the temperature dependence of relative stress

drop 1/ allows one to immediately find the points of these

transitions which, as can be seen from Fig. V.20, are practi-

cally independent of the chosen strain.

In conclusion, it should be emphasized once again that in

evaluating the efficiency of polymers, it is necessary to take

into account the different substates lying within the range

of temperatures between the glass and brittle points.
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Regions of the Work Capacity of Polymeric Materials

The methodology set forth in the preceding section may

also be employed in the detailed study of the relaxation

properties of polymeric solids, and in determining the period

of retention tr of the most dangerous (critical) ajd any other

stress. In order to determine these characteristics, of

course, a great deal of time must be spent and numerous series

of experiments must be conducted at different strains and

temperatures.

As always, the problem is very much simplified if the

tests are conducted under non-isothermal conditions. By

embracing the entire range of requisite temperatures in one

experiment, one may quickly obtain information on the

working capacity of polymers at any stresses and temperatures.

Thus, often it is most expedient to conduct tests not under

isothermal conditions, but with a continuously changing tempera-

ture. 29, 34

It is especially convenient to conduct such tests under

compression at increasing temperature. A specimen which dis-

plays a certain initial stress as a result of strain will expand

upon heating. Under the conditions of relaxation tests, the

"instantaneously" fixed strain is held constant, so that

stress in the speciment will change very uniquely with increasing
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temperature. Let us discuss several possible variants.

Before the test is begun, a polymer specimen is placed

between the working cylinders of a device suited for com-

pression testing (Fig. V.21). The space between these cylinders

is thermostated. In the simplest case, the polymer sample

is situated so that initial strain (and thus tress as well)

within it is zero (Fig. V.21, a); the working cylinders of

a relaxometer are attached and the temperature in the thermo-

stat is increased linearly. The rate of temperature increase

may be chosen arbitrarily, but it should not be ma a too great,

lest the specimen not be heated evenly throughout its thickness.

For a specimen 3 mm in diameter, a convenient rate of tempera-

ture increase would be from 1.5 to 4 grad/min.

The attached relaxometer cylinders impede the free thermal

expansion of the specimen during heating, so that a stress

develops within it which may be recorded over different time

periods or temperature ranges. The test results for any polymer

may be used to construct a curve of the dependence of stress

on temperature, shown graphically in Fig. 22.

In the first section of the graph, stress increases up

to a certain temperature, until the polymeric material remains

hard, and then begins to rapidly relax - this leads to'the

appearance of a maximum. At the point of the maximum, the
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rate of stress increase resulting from heat expansion is equal

to the rate of its decrease resulting from relaxation. At a

certain temperature, the stress relaxes completely, e.g. falls

to zero. At this moment the curve intersects the Lemperature

axis. The point of intersection characterizes the polymer's

glass point.

a 6 8

Figure V.21

Specimen and working
relaxometer cylinders
(layout).

The above test of non-isothermal stress relaxation is a

speciVJ case. Generally, the initial strain may be a value

other than zero (see Fig. V.21, b). It is fixed very quickly,

causing the appearance of initial stresses in the specimen. By

imparting different initial strains (and hence initial stresses)

to the specimen, and assigning, as usual, a linear temperature

increase in the thermostat, one may obtain a series of dependences

of stress on temperature (see Fig. V.23). The value of the

imparted initial strain should not be so great as to prevent a

maximum from being obtained on the curve.
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T-
Figure V.22.

The dependence of stresson temperature in deter-

mining the region of work
capacity. Initial strain
and stress are equal to
zero.

10 140 O80 20 260

Figure V.23.

Curves of non-isothermal
stress relaxation (dotted)
and the work-capacity
region of a polymeric
material (polyarylate
isophthalic acid and
phenolphthalein).
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Yet one more possible varient of positioning the specimen

and the working cylinders of the relaxometer is shown in

Fig. V.21, c. The specimen is placed so that there remains

some possibility for free thermal expansion. When the specimen

is stiffened against the upper working cylinder of the relaxo-

meter, a stress appears in it. At first the stress will in-

crease with increasing temperature, but will begin to decrease

again at a certain stress value.

Thus, conducting the experiments at different strains

(positive, zero, and formally speaking, even negative strains),

one may obtain a set of curves each of which has one maximum.

These curves are shown by the dotted lines in Fig. V.22. The

geometrical site of the maximum's point (solid line in Fig. V.23)

Iimits the region of temperatures and stresses in which the

3olymer specimen relaxes relatively slowly, and therefore

displays a clearly expressed hardness. This region is called

the region of the work capacity of a polymeric material.29, 34

It should be noted that the set of subsidiary (dotted) curves

converge at one point on the temperature axis, this point

corresponding to the glass point.

106



dw

4W-

2W -

Figure V.24

Work capacity region of polyarylate tere-
phthalic acid and phenolphthalein.

The curve limiting the region of work capacity, in a sense

similar to the graphs, is shown in Fig. V.14. Tests show35 that

this curve corresponds roughly to the time of stress retention,

equal to 1 min (the rate of temperature increase here is 4 grad/min).

Of course, if non-isothermal stress relaxation tests were con-

ducted at another heating rate, the position of the curve would be

changed.

The shape of the curve limiting the region of a polymeric

material' work capacity depends heavily on the temperature range

in which the test is conducted. Approaching the work capacity

region, it should be recalled that the glassy state is subdivided

into a number of substates (see page 423). Each of these sub-

states is characterized by its own relaxation mechanism, which

is reflected in the shape of the curve.
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If the test is conducted within a broad temperature range

embracing several substates, the work capacity region will

appear as shown in Fig. V.24. The curve limiting the region

has an upward curvature and consists of two easily discernable

sections. If the est is conducted in a comparatively narrow

temperature range corresponding to the substate closest to the

glass point, the work capacity region has a different appearance,

and the curve limiting this region has a downward cur ature

and consists of only one section (Fig. V.25).

.. 0 20 40 60 80 00 10 -0 760

.z.tI-

Figure V. 25.

Work capacity region of polycarbonate.

It may be stated that in the latter case a single relaxation

mechanism is at work, with the non-linearity of the relaxation

process clearly evident. Of course, losses of work capacity due

to softening are manifest in the abrupt acceleration of relaxation
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processes. Let us assume that a single Maxwell relaxation

mechanism is acting, and let us consider the dependence of

relaxation time t* on stress a and temperature T.** We mayr

then write

do _=_ a
t di .- ___ (V.73)

RT

If the test is conducted with a linear increase in tempera-

ture T with time t, Eq. (V.73) does not have to be integrated.

In fact

T = To  (V.74)

where To is the initial temperature; is the rate of temperature

increase.

E= O± atT

where Co is initial deformation; a is the rate of deformation

increase owing to thermal expansion (a = OK, where K is the

coefficient of linear expansion).

*See Eq. (1.40)

**See Eq. (1.43)
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Figure V.26.

The curve limiting the
work capacity region
(layout).

Combining Eqs. (V.73), (V.74) and V.75), we obtain

dt = -LdT; (V.76)

dc a d!= - dT = K dT

Ed - Up. (V.77)
p. o exp RT

(i.) (y)

Eq. (V.77) describes the set of curves represented by the

dotted line in Fig. V.23. However, we are interested in the

curve limiting the work capacity region (solid curve in Fig. V.23).

It pictures the geometrical location of the points of the maxi-

mums of the subsidiary relaxation curves. At these points, the
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rate of stress increase due to thermal expansion in the speci-

men is equal to the rate of stress decrease due to relaxation.

In other words, at the points of the maximums on the subsidiary

curves, d /dt = 0. Taking this condition into account, let us

rewrite relation (V.77).

o=Earpexp UP.YP (V. 78)
RT ,,

Having designated

Earp. o =W (V.79)

we will finally write

I UP. 0 V_ ' (V.80)
C; RT

Eq. (V.80) describes the curve limiting the region of the work

capacity of a polymeric material. This curve is shown graphically

in Figure V. 26, with all conditional designations included. The

accord of the shape of the theoretical curve (Figure V.26) with

experimental curves (see Figs. V.23 and V.25) indicates the pre-

dominance of a single relaxation mechanism in a specific tempera-

ture range. This range is relatively narrow and is immediately

adjacent to the glass point.
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Thus, if a non-isothermal stress relaxation test is con-

ducted only in one of the substates, directly adjacent to the

point, the process may be described with a single temperature

dependence of stress relaxation time. The correspondence of

the shape of the theoretical and experimental curves limiting

the work capacity region makes it possible to calculate, by means

of the experimental curve, the parameters of the relaxaticn pro-

cess - the energy of activation Ur, 0 and the coefficient Yr" The

computational method is explained in detail in the works.29 , 34

The Relat onship between the Processes of Fracture and

Softening

Fracture, regardless of its character, is almost always

preceded by some deformation. Even in the case of brittle fracture,

one may observe local deformations at separate points on the sur-

face of the fracture. Under durability test condition where a =

constant, creep develops in the material. It turns out that the

durability of a polymer is connected in a specific manner with the

creep velocity. In the works36 , 37 the following function may be

found

1 = vmA (v.81)
T

where T is durability; v - the average rate of creep (v = (er - e U)/T,

where er and cu are, respectively, breaking and elastic deformation);
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m and A are material parameters.

This dependence has been theoretically substantiated.
3 8

Eq. (V.81) has a special character and is satisfied for hard

polymers. To find the relationship between the breaking stress

and deformations in elastomers,.the visco-elastic properties of

the material are exmnined3 9 with consideration of the Muni-Rivlina

equation /see Eq. (111.17)7, along with the crack propagation

process. Much of the material from studies of rubber fracture is

set forth in a monograph by V. E. Gul.
4 0

The initiation and growth of sub-microcracks plays a large

role not only in the process of polymers' fracture6O, 61 b),- also

in the acceleration of deformation processes.
62 , 63

Many authors connecting the deformation mechanish with the

initiation and propagation of cracks in a specimen devote much of

their attention to studying the character of the fracture's surface.

This question has been repeatedly examined in many works (many of

which are cited above). A number of these works include many

microphotographs of the fracture surface, with very characteristic

patterns imprinted on the photographs created by local deforma-

tions of the material in individual microregions.

Without going into these experiments in greater detail, let

us note work done recently. Part of recent efforts have been
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devoted to methodological questions(determination of the mean

coefficient of rupture within "silver cracks"43 calculation of

the work done in the formation of a new surface during cracking44 ,

etc.). Orientation effects in the peaks of microcracks have

been concede! a large role in the strengthening of a material.

Systematic studies of the character of the fracture surface

of glassy polymers have been conducted by Kambour.4 5 - 48 The

area embraced by modification of the material on this surface

may be as much as several microns inthickness. As a result of

these studies, the form and dimensions of "silver cracks" have

been determined for a number of polymers; also accomplished was

the determination of the magnitude of ultimate elastic strains

within the cracks, an explanation of the role of heat effects in

crack propagation, etc. Information on the modifications of material

on the fracture surface, the topography of this surface and other

corresponding phenomena may also be found in such works. 49 -54

For some time now, the results of fractographic studies of

the surface of polymers' fracture have been correlated with the

temperature-time dependence of strength§4 - 65

A characteristic pattern in the shape of a parabola is formed

on the fracture surface of glassy polymers during brittle fracture.

However, the brittle fiacture of such polymers is not always

accompanied by the formation of a parabola. If a glassy polymeric
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solid is capable of forced-elastic deformation during a moderate

rate of stress, and if the elements of the super-molecular

structure in such a solid are bound to one another with suffi-

cient strength, then under rapid mechanical action, brittle

fracture may occur with the formation of a parabola on the

fracture surface (Fig. V.27). If elements of the super-molecular

structure in polymeric glasses are bound weakly to one another,

then brittle fracture will be observed at both great and small

rates of stress, and at both low and high temperatures. In this

case, parabolas55 are not formed on the fracture surface; there

will be no regular pattern to the lines on the surface (Fig. V.28).

Thus, it is necessary to clearly distinguish two different

concepts: "brittle fracture" and "brittle material." Brittle

fracture may be displayed by practically any polymeric material,

including, as it were, classic elastic materials such as raw

rubber and cured rubbers with a raw rubber base. For this, one

need only reduce the temperature or substantially increase the

rate of mechanical action.

Brittle material, due to the poor coherence of elements of

its super-molecular structure, is not capable of manifesting

marked deformations under any temperature and time conditions

of stress; so that it displays brittle fracture. In this case,

everything depends on the type and dimensions of the super-molecular

structure.
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For example, in films of isotactic crystallized polypropylene,

large well-formed spherulites may develop, and then in the great

majority of cases such a film cannot be drawn even several

percentages. Conversely, small spherulites may develop and under

certain conditions56 the film will, even at the temperature of

liquid nitrogren, be capable of deformation by tens of percent.

Let us turn again to amorphous polymer glasses. These

glasses may have various types o- super-molecular structure. The

most common type is a globular structure, also characteristic for

inorganic amorphous glasses.

Figure V.27.

Parabola formation on
the surface of fracture
of polyarylate iso-
phthalic acid and
phenolphthalein (X200)
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Figure V.28.

Fracture surface of
polyarylate isoph-
thalic acid and
phenolphthalein with
a globular super-
molecular structure
(X 100).

If the globules are compact, and their constituent macro-

molecules cannot be expanded under stress, brittle fracture will

take place in the presence of very little strain. The ability

of the macromolecules to resist uncoiling under stress may be

due either to their rigidity or to the presence of a certain

amount of physical or chemical bonds, "stitching coils."

As we already know, the super-molecular structure in glasses

may, theoretically, be changed, altering it from globular form

to a fibrillar or more complex form. Polymeric glasses of non-

globular structure or "soft" globular structure display marked

deformation, and in brittle fracture a notable change takes place

in the polymer material on the fracture surface. This also leads,

in particular, to the appearance of characteristic parabolas (see

Fig. V.27).
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Thus, from a polymer of a certain chemical composition, one

may formulate different materials, both brittle and non-brittle;

to indicate that a given polymer is brittle or is not brittle is

incorrect.

Thus, the least change in the material on the fracture sur-

face of polymeric glasses occurs in those cases where it is much

easier to overcome the weak forces binding the globule-like

elements of the super-molecular structure than it is to uncoil the

macromolecules and cause the rupture of strong chemical bonds in

the main chain. If this is done, one can observe a very interest-

ing pattern.4
0 - 42

The ability of a polymeric material to display forced-elastic

strain plays an important role in the fracture process. It was

noted above that the fracture mechanism may be different in each

of the substates of a glassy polymer.

In the substate in which forced elasticity is manifest, the

fracture process is connected with relaxation (strain) phenomena

in material, which is located in the peaks of microcracks. G. M.

Bartenev believes3 2 that the transition from brittle fracture to

forced-elastic fracture occurs as soon as the relaxation time

tr becomes equal to the time ts of the elementary event of crack

propagation. Since the relaxation time and time t. are stress-

dependent, the brittle temperature is also a function of stress.
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The correlation of temperature dependences of tr and ts for

polymethyl methaczylate leads to a value for the brittle

temperature conforming to experimental data.2

Another approach to the problem of the long-term strength of

hard solids is based on phenomenological analysis and the use of

methods of continuum mechanics.66 - 69 In the work66, brittle

fracture is examined independently of he creep and is connected
A

with the process of crack initiation evolving over time. It is

assumed 66 that the process of crack propagation has basically

no effect on creep deformation, but that if it does exert such an

effect, then the creep curves from which the creep equation is

set up will reflect the total effect.

The scalar X, called continuity, introduced as a quanti-

tative characteristic of damage to t.- terial. At the initial

moment when damage is absent, X = 1. Over time X decreases, and

at a certain small value Xo > 0, main cracks will appear in indi-

vidual weak spots in the material, these cracks intensifying the

fracture process. But since the value of Xo cannot be experi-

mentally determined and the time elapsing from the moment of major

crack formation to the complete fracture of the specimen is

insubstantial, then it is assumed that at the moment of brittle

fracture, X = 0.
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Thus, the time to brittle fracture will be know if one can

determine the time over which the value of X changes from 1 to 0.

It is assmed that the rate of change in parameter X depends on

stress and the value of X itself. In the work 67 structural para-

meter w is substituted for continuity X, w being assumed a

measure of "embrittlement." These parameters are related thus:

w - X-

To simplify further calculations, let us assume an exponential

dependence between the rate of continuity change and the ratio Go/X

which may be interpreted as the true mean stress at any moment of

time.

Then

(V. 82)

where A and n are certain coefficients at constant temperature

(A > 0).

By integrating Eq. (V.82) for X.from X = 1 to X = 0 and

for t from t = 0 to t = txrt we will find the time of brittle

fracture

(+)c! 
(V.83).(n 1) Mon

120

A



Function V.83 corresponds to an idealized case, when creep

in the material is completely absent.

Since in actuality creep does occur, it should be considered

that stress will be increased owing to a decrease in cross-

sectional area. The process of'brittle fracture is thereby

acclerated. As a consequence, mixed fracture occurs. L. M.

Kachanov66 derived the following expression for durability in

creep tk:

t m-(V.84)

where tv is the time of ductile fracture, determined by function

(V.87); txr is the time of pure brittle fracture according to

function (V.83); m and n are parameters in Eqs. (V.85) and (V.82).

It is obvious that Eq. (V.84) is valid when tk tv. An

approximate model has been constructed to describe the process

of crack propagation in the final stage undez different stress

condtions.

Yu. N. Rabotnov67' 68, 70, using a hypothesis of the uniform

flow of the crack propagation process, not only determined the

time of brittle and mixed fracture, but also derived functions

describing the part of creep preceding fracture.

121



The theories examined above, relating the processes of de-

formation and fracture, were not developed mainly for polymeric

materials, so that their applicability to polymers is still un-

resolved.

11f71

off 1 studied long-term strength under uniaxial tension,

assuming that as a result of creep the cross-sectional area of

the specimen was diminished over time, with this reduction

having an effect on the magnitude of stress and, therefore, on

the rate of creep in the specimen. For durability he took the

time over which, as a result of creep, the cross-sectional area

of a rod was reduced to zero. Such a form of fracture is accom-

panied by large linear strains and has a ductile character.

Hoff used a relation valid for small strains as a creep

law

e(v.85)

where "a" and m are experimentally determined constants.

We can assume that relation (V.85) is also valid in the region

of large strains, if we substitute actual values for the stresses

and strains determined with the relations

Pm-Ir) (V.86)
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where P is the applied external load; F is the cross-section of

the specimen; 1, 1 are the lengths of the specimen at any
0

moment of time and at the moment of loading.

Hoff derives an equation making it possible to compute the

cross-sectional area of a specimen for any moment of time, and

consequently, the period of time tv over which this area is

reduced to zero:

1 (V.87)

where a is stress at the moment of loading.0

It should be noted that Hoff's approach does not have a wide

application. The results hereby obtained pertain only to uniaxial

tension, and cannot always be generalized for c ;her forms of

strain. Thus, according to this scheme, creep under torsion

cannot lead to fracture, an ascartion contradicted by experimental

data.

Several questions pertaining to the relationship between

deformation and fracture are posed in the ';orks.72 - 80

Having detailed the different approaches to the processes of

fracture and softening based on kinetic concepts, it would be

helpful to proceed to the correlation of the temperature-time

dependences of strength and deformability. Let us note once
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again beforehand that each mode of thermal and mechanical action

corresponds to a specific value of a material's durability - the

time elapsing from the moment of a load's application to the

brittle fracture or softening of a material.

If stress a and temperature T are constant, the durability

of polymeric materials is described by one of the relations

(V.1), (V.3), (V.8), (V.11) etc. Under these same conditions,

the durability of the form t is determined by either of the

Eqs. (V.32) or (V.33). Depending on the numerical value of the

parameters entering into these equations and on stress and

temperature, the following inequalities will generally be

satisfied.

<z (V.88)

S>2. (V.89)

Inequality (V.88) corresponds to the softening of a material,

since the durability of the form t is exhausted before fracture.

Inequality (V.89) corresponds to the fracture oi a material, since

durability t is exhausted before the rapid development of deforma-

tion (softening). In the special case where t = t., fracture

and softening take place simultaneously, and this condition

corresponds with the advent of brittleness.
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The above scheme for fracture and softening is a generaliza-

tion of the well-known scheme for brittle and non-brittle (forced-

elastic) fracture advanced by A. P. Alekcandrov and Yu. S. Lazurkin

presented in detail on page 149.

Let us use in a geometric characterization of working

capacity57 to graphically illustrate the effect of the conditions

of mechanical and therval action, as well as the material para-

meters, on the working capacity of polymers. This volumetric

characteristic represents a set of two (or more) areas, each of

which is described by equations of the temperature-time dependence

of strength and deformability. A generalized work capacity region

is conveniently constructed in the coordinates a, T, log t (log t ).

Figure V.29 shows graphically the different variants of the

reciprocal positions of areas of strength of deformability under

the conditions a = constant and T = constant. The coordinate

planes correspond to certain constant values of , T and log t.

It can easily be seen from these diagrams that, dependingoon the

stress, temperature and material parameters, either fracture

or softening will occur first. The line intersecting the areas

represents the brittleness line, since it corresponds to the

conditions under which one observes a transition from softening

of the material to its brittle fracture. The region of the

polymeric material's work capacity is determined by the set of the

inner sections of both areas and the coordinate planes.
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Figure V.29.

Volumetric characteristics of the work capacity
of polymeric materials (layout):

a, b, c, d - different variants of the location
of strength and deformability areas. 1 - strength
area; 2 - deformability area.

The geometrical characteristic of efficiency for polycaprolactam

58fiber may be found in the work. It should be noted that in

individual cases, the surfaces may not intersect. In this case, if

the area of deformability lies above the strength area, then brittle
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fracture will be observed at any stresses and temperatures. Such

a phenomenon is very characteristic of polymers with a stable

globular structure.29' 59 The geometrical characteristics of

polymers' mechanical work capacity shown in Figure V.29 are valid

under constant stress and isothermal conditions. Generally,

with arbitrary modes of thermal and mechanical action, the time

to fracture or softening is a function of stress and temperature

/see Eqs. (V.18) and (V.34)7.

In concluding, let us turn our attention once more to the

several remarkable phenomena described above. One of these

reflects the experimental fact according to which necking occurs

in amorphous and crystalline polymers under conditions other than

uniaxial tension with increasing load. A rigidly constant stress

acting in a specimen also initiates the formation of a neck. The

greater the stress, the less the time that elapses from the moment

of loading until the spasmodic nucleation of a neck.

Thus, the nucleation of a neck is possible not only under

stresses equal to the forced elastic limit a ev or recrystalliza-

tion stress arekr' but under other, substantially smaller

stresses. However, fracture is more carefully studied from these

viewpoints than is softening.

It may be assumed that softening, as fracture, is a kinetic

process consisting of the gradual accumulation of elementary

softening events and leading ultimately to the loss of the
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original form of a solid. The question of the nature of these

elementary softening events remains open at present. They may

possibly be connected with the rupture of intermolecular or inter-

structural bonds. The results of measurements of the activation
6, 8 - 10, 12, 13, 23, 35

energy of the process still have not

made it possible to arrive at any firm conclusions on the process'

mechanism. In any case, it may be asserted on the basis of

numerous structural studies that softening is connected with the

rearrangement of a polymeric solid's structure at all of its

levels.

Let us now turn to another interesting phenomena. A

specific interval of time elapses between loading and the beginn-

ing of necking. Under conditions where a = constant, this period

is determined by Eqs. (V.32) and (V.33). If stress is changed

with time, the period over which the form of a solid will be

retained is a function of stress and is determined by relation

(V.34), quite similar to Bailey's criterion /see Eq. (V.17)7.

This means that the form of a polymeric solid is lost gradually

under a variable load, and at the moment when the loss of the

form's durability equals unity, large deformations are spasmodi-

cally developed.

All of this allows us to approach the phenomenon of necking

under uniaxial tension at a certain velocity in a new way. During

128



tension, elementary acts of the softening process are occuring;

over time, the durability of the form of a solid is lost. As soon

as relative durability reaches unity, a neck is formed and

conditions favoring the growth of large deformations are created

(of course, during this, relative "aging" should not reach unity,

or otherwise the specimen. will be fractured).

This scheme allows us to explain all of the phenomena con-

nected with the effect of temperature and loading rate on the

forced-elastic limit ave or on recrystallization stress arekr.

Thus, by increasing the rate of tension, we approach the moment

of neck formation, and according to Eqs. (V.32) and (V.37), a

spasm (nucleation of the neck) occurs at large values or ave or

Grekr. According to the same relations, an increase in tempera-

ture leads to a lowering of the values of ave and arekr"

Let us again try to connect the two processes of fracture

and softening. Quite obviously, both of these processes occur

simultaneously. It is well known that fracture occurs on the

molecular level as a result of the rupture of the chemical

bonds of macromolecules and, possibly, intermolecular bonds;

on the super-molecular level, it occurs by means of the propaga-

tion of microcracks and the reordering of structural elements.

All of these phenomena take place under the influence of a

mechanical load.
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The same load also influences the softening process,

regardless of whether softening or fracture occurs first.

Thus, it is clear that the rupture of chemical and inter-

molecular bonds, crack propagation and the rearrangement of

structural elements occur during the softening process.

The question then arises - are not these processes

identical, e.g. do they not occur by means of exactly the same

mechanism? The identity of the mechanisms does not mean that

both processes are fully equivalent.

Depending on its chemical composition and super-molecular

structure, a polymeric solid will be dominated by that mecnanism

which encounters the least resistance. Thus, within the range

of oriented systems, the rupture of chemical bonds in the main

chain of macromolecules is more easily effected than the rupture

of a large group of intermolecular bonds along the chains. As

shown by S. N. Zhurkov (see Chap. 14), the fracture mechanism

is such systems is dependent on the gradual accumulation of

broken fragments of macromolecules. This is an extreme case.

In other instances, intermolecular bonds are broken, the

structure is rearranged, cracks are developed, etc. As a result,

a polymeric solid may remain whole, but it will undergo large

deformations, e.g. soften. It should be noted once more that
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from kinetic points of view, the softening process has not yet

been studied as thoroughly as has fracture, and we ynay expect

the future to bring new and interesting results.
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